МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Теория и применение микропроцессоров Б3.В.4

Направлени	е подготовки: <u>011800.62 - Радиофизика</u>
Профиль по	дготовки: Радиофизические измерения
	•

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Насыров И.А., Терешин С.Н.

Рецензент(ы): <u>Гумеров Р.И.</u>

ററ	ГΠ	AC	\cap D	ΛL	M.
CU	. ,,	AL	UD	ΑГ	IU.

Заведующий(ая) кафедрой: Овчинников М. Н.	
Протокол заседания кафедры No от ""	201г
Учебно-методическая комиссия Института физики:	
Протокол заседания УМК No от ""	201г

Регистрационный No 6111414

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Насыров И.А. Кафедра радиоэлектроники Отделение радиофизики и информационных систем, Igor.Nasyrov@kpfu.ru; ассистент, б/с Терешин С.Н. Кафедра радиоэлектроники Отделение радиофизики и информационных систем, Sergei.Tereshin@kpfu.ru

1. Цели освоения дисциплины

Целью освоения дисциплины (модуля) Теория и применение микроконтроллеров является изучение микроконтроллеров на основе 8-ми 16-ти и 32-х разрядных процессорных ядер и их применение в устройствах управления и обработки данных.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б3.В.4 Профессиональный" основной образовательной программы 011800.62 Радиофизика и относится к вариативной части. Осваивается на 3, 4 курсах, 6, 7, 8 семестры.

Данная учебная дисциплина входит в раздел "Б3.В.8 Профессиональный цикл по направлению подготовки "Радиофизика Радиофизические измерения". Курс предназначен для студентов 4 курса, 7 семестр.

Для освоения содержания дисциплины необходимо знание основ радиоэлектроники, цифровой электроники, информатики. Она формирует профессиональные компетенции, необходимые для прохождения учебных и производственных практик, освоения модулей профессионального цикла.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1 (профессиональные компетенции)	способность использовать базовые теоретические знания (в том числе по дисциплинам профилизации) для решения профессиональных задач
ПК-2 (профессиональные компетенции)	способность применять на практике базовые профессиональные навыки
ПК-3 (профессиональные компетенции)	способность понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры и оборудования
ПК-4 (профессиональные компетенции)	способность использовать основные методы радиофизических измерений
ПК-5 (профессиональные компетенции)	способность к владению компьютером на уровне опытного пользователя, применению информационных технологий для решения задач в области радиотехники, радиоэлектроники и радиофизики (в соответствии с профилизацией)
ПК-6 (профессиональные компетенции)	способность к профессиональному развитию и саморазвитию в области радиофизики и электроники

В результате освоения дисциплины студент:

1. должен знать:

принципы работы микропроцессоров, особенности различных архитектур и соответствующих им систем команд и способов адресации, иметь представление о возможностях и свойствах периферийных устройств современных микроконтроллеров, о способах организации интерфейсов и сопряжения с внешними устройствами;

2. должен уметь:

использовать серийные микропроцессорные устройства при решении конкретных задач управления устройствами сбора и обработки данных.

3. должен владеть:

методами разработки цифровых устройств на основе МК.

4. должен демонстрировать способность и готовность:

к самостоятельным разработкам устройств и систем на основе МК с архитектурой AVR и ARM.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 13 зачетных(ые) единиц(ы) 432 часа(ов).

Форма промежуточного контроля дисциплины отсутствует в 6 семестре; экзамен в 7 семестре; зачет в 8 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр Неделя семестр			Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	Модуля			Лекции	Практические занятия	Лабораторные работы	•
1.	Тема 1. Общие сведения об МК AVR. Архитектура семейства ATmega.	6		6	0	6	
2.	Тема 2. Порты ввода/вывода. Таймеры/счётчики. Универсальный синхронный/асинхронн приёмопередатчик	6 ый		6	0	6	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные			Текущие формы контроля
				Лекции	занятия	работы	
3.	Тема 3. Система команд: Принятые обозначения Команды Прямая адресация к регистрам ввода/вывода Косвенная адресация данных Команды пересылки данных Команды ветвления Битовые команды и команды тестирования битов	6		6	0	6	устный опрос
4.	Тема 4. Программирование AVR	7		6	0	6	устный опрос
5.	Тема 5. Построение приложения создание проекта загрузка файла компиляция симуляция загрузка hex-кода в микроконтроллер	7		6	0	6	устный опрос
6.	Тема 6. Микроконтроллеры XMEGA Основные характеристики МК XMEGA Архитектура Память Ввод-вывод Арбитраж шины	7		6	0	12	устный опрос
7.	Тема 7. Система событий	7		6	0	6	устный опрос
8.	Тема 8. Программирование Atmel Studio 6.2 Работа в ?Atmel Studio 6.2	7		6	0	12	коллоквиум
9.	Тема 9. Задания по XMEGA и Atmel Studio 6	7		6	0	12	коллоквиум
10.	Тема 10. Выполнение задания по лабораторной работе ••1	8		2	0	8	устный опрос
11.	Тема 11. Выполнение Задания 2.	8		2	0	8	устный опрос
12.	Тема 12. Выполнение Задания 3	8		2	0	8	устный опрос
13.	Тема 13. Выполнение Задания 4	8		2	0	8	устный опрос

N	Раздел Дисциплины/ Модуля	Семестр Недел семест			Виды и ча аудиторной ра их трудоемк (в часах)	Текущие формы контроля	
	модуля		-	Лекции	Практические занятия	Лабораторные работы	
14.	Тема 14. Задание 1 по хМеда	8		2	0	8	устный опрос
15.	Тема 15. Задание 1 по ARM контроллерам	8		2	0	8	
16.	Тема 16. Продолжение работы по ARM	8		2	0	8	
17.	Тема 17. Задание по xMOS	8		2	0	8	
18.	Тема 18. Задание по xMOS. Продолжение и завершение.	8		2	0	8	
	Тема . Итоговая форма контроля	7		0	0	0	экзамен
	Тема . Итоговая форма контроля	8		0	0	0	зачет
	Итого			72	0	144	

4.2 Содержание дисциплины

Тема 1. Общие сведения об МК AVR. Архитектура семейства ATmega.

лекционное занятие (6 часа(ов)):

Общие понятия о микропроцессорах, микропроцессорных системах и микроконтроллерах. (Ядро, память, интерфейс, периферия).

лабораторная работа (6 часа(ов)):

Изучение модуля ASmegaM, работы с цифровым осциллографом GDS2202

Тема 2. Порты ввода/вывода. Таймеры/счётчики. Универсальный синхронный/асинхронный приёмопередатчик

лекционное занятие (6 часа(ов)):

Назначение, устройство и программирование таймеров микроконтроллеров. Задание работы в различных режимах.

лабораторная работа (6 часа(ов)):

Изучение среды разработки AVRStudio 4.

Тема 3. Система команд: Принятые обозначения Команды Прямая адресация к регистрам ввода/вывода Косвенная адресация данных Команды пересылки данных Команды ветвления Битовые команды и команды тестирования битов

лекционное занятие (6 часа(ов)):

Архитектура MK AVR и связанные с ним особенности системы команд и методов адресации.

лабораторная работа (6 часа(ов)):

Программный симулятор и его применение в отладке приложений.

Тема 4. Программирование AVR

лекционное занятие (6 часа(ов)):

Язык ассемблера для микроконтроллеров AVR. Синтаксис и примеры.

лабораторная работа (6 часа(ов)):

Пример из руководства, его компиляция и демонстрация работы на симуляторе.

Тема 5. Построение приложения создание проекта загрузка файла компиляция симуляция загрузка hex-кода в микроконтроллер

лекционное занятие (6 часа(ов)):

Особенности построения приложений для микроконтроллеров, библиотеки, include файлы и т.д.

лабораторная работа (6 часа(ов)):

Создание приложения пользователя и загрузка его в МК.

Тема 6. Микроконтроллеры XMEGA Основные характеристики МК XMEGA Архитектура Память Ввод-вывод Арбитраж шины

лекционное занятие (6 часа(ов)):

Развитие архитектуры от MEGA к хМЕGA. Новые функции и возможности.

лабораторная работа (12 часа(ов)):

Знакомство с модулем xPlaned A3BU

Тема 7. Система событий

лекционное занятие (6 часа(ов)):

Система событий в архитектуре МК. Новые возможности для работы в режиме жесткого реального времени.

лабораторная работа (6 часа(ов)):

Использование библиотек для работы в режиме жесткого реального времени.

Тема 8. Программирование Atmel Studio 6.2 Работа в ?Atmel Studio 6.2

лекционное занятие (6 часа(ов)):

Изучение программного интерфейса Atmel Studio 6.2

лабораторная работа (12 часа(ов)):

Работа в ?Atmel Studio 6.2

Тема 9. Задания по XMEGA и Atmel Studio 6

лекционное занятие (6 часа(ов)):

Особенности архитектуры микроконтроллера XMEGA.

лабораторная работа (12 часа(ов)):

Быстрое начало по программированию микроконтроллера XMEGA.

Тема 10. Выполнение задания по лабораторной работе ♦1

лекционное занятие (2 часа(ов)):

Система команд в МК XMEGA.

лабораторная работа (8 часа(ов)):

Лабораторная работа ◆1 по программированию микроконтроллера XMEGA.

Тема 11. Выполнение Задания 2.

лекционное занятие (2 часа(ов)):

Система прерываний в МК XMEGA.

лабораторная работа (8 часа(ов)):

Лабораторная работа •2 по программированию микроконтроллера XMEGA.

Тема 12. Выполнение Задания 3

лекционное занятие (2 часа(ов)):

Система событий в МК XMEGA.

лабораторная работа (8 часа(ов)):

Лабораторная работа ♦3 по программированию микроконтроллера XMEGA.

Тема 13. Выполнение Задания 4

лекционное занятие (2 часа(ов)):

Использование языка С\С++ для программирования микроконтроллера XMEGA.

лабораторная работа (8 часа(ов)):

Лабораторная работа �4 Использование стандартных библиотек для микроконтроллера XMEGA.

Тема 14. Задание 1 по хМеда

лекционное занятие (2 часа(ов)):

Создание рабочего приложения, реализующего алгоритм шифрования DES

лабораторная работа (8 часа(ов)):

Лабораторная работа. Использование стандартных библиотек для микроконтроллера XMEGA.

Тема 15. Задание 1 по ARM контроллерам

лекционное занятие (2 часа(ов)):

ATmelStudio и режим симуляции.

лабораторная работа (8 часа(ов)):

На основе задания 1 по ARM построить приложение и в режиме симуляции на ATmelStudio убедиться в его работоспособности.

Тема 16. Продолжение работы по ARM

лекционное занятие (2 часа(ов)):

Приложение SAM-BA. Интерфейс и особенности применения.

лабораторная работа (8 часа(ов)):

С помощью приложения SAM-BA загрузить программу в контроллер и убедиться в корректной работе программы.

Тема 17. Задание по xMOS

лекционное занятие (2 часа(ов)):

Система программирования xTIMEcomposer13. Интерфейс пользователя, особенности применения.

лабораторная работа (8 часа(ов)):

Знакомство с xTIMEcomposer13 и модулем XK-1A.

Тема 18. Задание по хМОЅ. Продолжение и завершение.

лекционное занятие (2 часа(ов)):

Создание готовых приложений на платформе xMOS

лабораторная работа (8 часа(ов)):

Задание из Руководства: загрузка проекта, построение приложения, загрузка в модуль ХК-1А, изменение некоторых значений в приложение, наблюдение работы.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 1. Общие сведения об МК AVR. Архитектура семейства ATmega.	6		Оформление лабораторной работы.	12	устный опрос
2.	Тема 2. Порты ввода/вывода. Таймеры/счётчики. Универсальный синхронный/асинхронн приёмопередатчик	6 ый		Подготовка к устному опросу	12	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
3.	Тема 3. Система команд: Принятые обозначения Команды Прямая адресация к регистрам ввода/вывода Косвенная адресация данных Команды пересылки данных Команды ветвления Битовые команды и команды тестирования битов	6		подготовка к устному опросу	12	устный опрос
4.	Тема 4. Программирование AVR	7		подготовка к устному опросу	12	устный опрос
5.	Тема 5. Построение приложения создание проекта загрузка файла компиляция симуляция загрузка hex-кода в микроконтроллер	7		подготовка к устному опросу	12	устный опрос
6.	Тема 6. Микроконтроллеры XMEGA Основные характеристики МК XMEGA Архитектура Память Ввод-вывод Арбитраж шины	7		подготовка к устному опросу	18	устный опрос
7.	Тема 7. Система событий	7		подготовка к устному опросу	18	устный опрос
8.	Тема 8. Программирование Atmel Studio 6.2 Работа в ?Atmel Studio 6.2	7		подготовка к коллоквиуму	18	коллоквиум
9.	Тема 9. Задания по XMEGA и Atmel Studio 6	7		подготовка к коллоквиуму	12	коллоквиум
10.	Тема 10. Выполнение задания по лабораторной работе • 1	8		подготовка к устному опросу	10	устный опрос
11.	Тема 11. Выполнение Задания 2.	8		подготовка к устному опросу	10	устный опрос
12.	Тема 12. Выполнение Задания 3	8		подготовка к устному опросу	10	устный опрос
13.	Тема 13. Выполнение Задания 4	8		подготовка к устному опросу	10	устный опрос
14.	Тема 14. Задание 1 по xMega	8		подготовка к устному опросу	10	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
15.	Тема 15. Задание 1 по ARM контроллерам	8		Оформление лабораторной работы.	10	устный опрос
	Тема 16. Продолжение работы по ARM	8		Оформление лабораторной работы.	10	устный опрос
17.	Тема 17. Задание по xMOS	8	l	подготовка к устному опросу	10	устный опрос
18.	Тема 18. Задание по xMOS. Продолжение и завершение.	8		Оформление лабораторной работы.	10	устный опрос
	Итого				216	

5. Образовательные технологии, включая интерактивные формы обучения

Используются такие интерактивные формы обучения как обсуждение теоретических вопросов, подготовка и представление докладов, проведение блиц-опросов, применение роли экспертов для студентов.

Выполняются лабораторные работы.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Общие сведения об МК AVR. Архитектура семейства ATmega.

устный опрос, примерные вопросы:

Тема 2. Порты ввода/вывода. Таймеры/счётчики. Универсальный синхронный/асинхронный приёмопередатчик

устный опрос, примерные вопросы:

Назначение портов ввода-вывода, структура, программирование. Таймеры-счетчики: функции, структурная схема, программирование, режимы работы, ШИМ. USART (УСАПП) - основа последовательной периферии.

Тема 3. Система команд: Принятые обозначения Команды Прямая адресация к регистрам ввода/вывода Косвенная адресация данных Команды пересылки данных Команды ветвления Битовые команды и команды тестирования битов

устный опрос, примерные вопросы:

Классификация команд и описание каждого класса. Адресация (регистры, память, ввод-вывод).

Тема 4. Программирование AVR

устный опрос, примерные вопросы:

язык ассемблера для AVR: директивы, команды, определения, примеры.

Тема 5. Построение приложения создание проекта загрузка файла компиляция симуляция загрузка hex-кода в микроконтроллер

устный опрос, примерные вопросы:

среда AVRStudio4, загрузчик AS-2, модуль ASmega128

Тема 6. Микроконтроллеры XMEGA Основные характеристики МК XMEGA Архитектура Память Ввод-вывод Арбитраж шины

устный опрос, примерные вопросы:

Архитектура MK AVR, xMEGA (отличие, новые возможности), характеристики внешних устройств.

Тема 7. Система событий

устный опрос, примерные вопросы:

Система событий: функции, программирование, аппаратная реализация, примеры применения.

Тема 8. Программирование Atmel Studio 6.2 Работа в ?Atmel Studio 6.2

коллоквиум, примерные вопросы:

Среда AtmelStudio6.2, назначение рабочих окон, открытие проекта, построение решения, отладка, С, С++ для программирования МК в среде AtmelStudio6.2,

Тема 9. Задания по XMEGA и Atmel Studio 6

коллоквиум, примерные вопросы:

Многоядерные, многопоточные МК с ядром xCore: архитектура, области применения, особенности разработки приложений.

Тема 10. Выполнение задания по лабораторной работе ♦1

устный опрос, примерные вопросы:

Описание этапов разработки программы для задания 1.

Тема 11. Выполнение Задания 2.

устный опрос, примерные вопросы:

Описание этапов разработки программы для задания 2

Тема 12. Выполнение Задания 3

устный опрос, примерные вопросы:

Описание этапов разработки программы для задания 3

Тема 13. Выполнение Задания 4

устный опрос, примерные вопросы:

Описание этапов разработки программы для задания 4

Тема 14. Задание 1 по xMega

устный опрос, примерные вопросы:

Особенности программирования "системы событий" МК хМЕGA.

Тема 15. Задание 1 по ARM контроллерам

устный опрос, примерные вопросы:

Описание этапов разработки программы для Задания 1 по ARM контроллерам

Тема 16. Продолжение работы по ARM

устный опрос, примерные вопросы:

Отчет по программному коду для Задания 1 по ARM контроллерам

Тема 17. Задание по xMOS

устный опрос, примерные вопросы:

Среда xTIMEcomposer, назначение рабочих окон, открытие проекта, построение решения, отладка, С, и расширение xC для программирования параллельных потоков MK xMOS в среде xTIMEcomposer

Тема 18. Задание по хМОЅ. Продолжение и завершение.

устный опрос, примерные вопросы:

Описание этапов разработки программы для Задания 1 по xMOS контроллерам

Тема. Итоговая форма контроля

Тема. Итоговая форма контроля

Примерные вопросы к зачету и экзамену:

ВОПРОСЫ К КОЛЛОКВИУМУ И ЗАЧЕТУ

1. Классификация микропроцессоров, обобщенная логическая структура.

- 2. Программируемый таймер, назначение, устройство.
- 3. Простые однокристальные микроконтроллеры, архитектура, временные циклы, система команд.
- 4. Микропроцессорная система, функциональная схема.
- 5. Программируемый параллельный интерфейс.
- 6. Устройства памяти микропроцессорных систем. ОЗУ, ПЗУ (флэш), классификация, параметры.
- 7. Система команд, способы адресации.
- 8. Прерывания, контроллер прерываний, программирование прерываний.
- 9. Гарвардская архитектура, ее особенности.
- 10. Прямой доступ к памяти, контроллер ПДП, программирование.
- 11. Интерфейс FUTUREbus, архитектура, свойства.
- 12. Параллельный и последовательный обмен данными, контроллеры.
- 13. Представление чисел, форматы данных.
- 14. Интерфейсы, классификация. Стандартные интерфейсы, назначение, основные параметры.
- 15. Последовательный обмен данными (УСАПП), схема, применение.
- 16. Интерфейс VMEbus, спецификация, архитектура, назначение.
- 17. Высокопроизводительные 32-х разрядные микроконтроллеры (AVR, ARM). Особенности архитектуры.
- 18. Локальные сети: классификация, иерархическая структура, уровни и протоколы, аппаратные ресурсы микроконтроллеров.
- 19. Средства разработки и отладки устройств на основе микроконтроллеров.

7.1. Основная литература:

Список литературы приводится из учебного плана Радиофизические методы по областям применения (Радиофизические измерения), Бакалавр, 2011.

Программа курса - Теория и применение микроконтроллеров. Б3.В.8

- 1.Трамперт B. AVR-RISC микроконтроллеры : архитектура, аппаратные ресурсы, система команд, программирование, применение. ? Киев : МК-Пресс, 2006 . ? 464 с. ISBN 966-8806-07-7 ((рус.)), 3000. ? ISBN 3-7723-5476-9 ((нем.))
- 2. Угрюмов, Е. П. Цифровая схемотехника : учеб. пособие для вузов / Е.П. Угрюмов. ? 3-е изд., перераб. и доп. ? СПб.: БХВ-Петербург, 2010. ? 809 с.: ил. ISBN 978-5-9775-0162-0. http://znanium.com/bookread.php?book=350426
- 3. Гумеров Р.И. Программируемые микроэлектронные системы. Часть І. 8-разрядные микроконтроллеры. Руководство к практикуму [Электронный ресурс]. Казань, КПФУ, 2014. -74с. Режим доступа: http://kpfu.ru/main_page?p_cid=12554&p_view=1&p_random=203
- 4. Микушин, А. В. Цифровые устройства и микропроцессоры: учеб. пособие / А. В. Микушин, А. М. Сажнев, В. И. Сединин. ? СПб.: БХВ-Петербург, 2010. ? 832 с.: ил. ? (Учебная литература для вузов). ISBN 978-5-9775-0417-1. Режим доступа: http://znanium.com/bookread.php?book=350706

7.2. Дополнительная литература:

Список литературы приводится из учебного плана Радиофизические методы по областям применения (Радиофизические измерения), Бакалавр, 2011.

Программа курса - Теория и применение микроконтроллеров. Б3.В.8

- 1. Кузьминов А.Ю. Интерфейс RS232: Связь между компьютером и микроконтроллером: От DOS к WINDOWS98/XP/ А.Ю. Кузьминов. "ДМК Пресс", 2009. 320 с. Режим доступа: http://e.lanbook.com/view/book/883/
- 2. Гумеров Р.И. Программируемые микроэлектронные системы. Часть II. 32-разрядные микроконтроллеры. Руководство к практикуму [Электронный ресурс]. Казань, КПФУ, 2014. -61 с. Режим доступа: http://kpfu.ru/main_page?p_cid=12554&p_view=1&p_random=203

7.3. Интернет-ресурсы:

xMos, XK-1A Development Board Tutorial -

http://www.xmos.com/published/xmos-programming-guaide?version=latest

xTIMEcomposer user guaide rev.13.0.0 -

https://www.xmos.com/download/public/xTIMEcomposer-User-Guaide%2813/0/0%29.pdf

Аппаратные средства на микроконтроллерах серии SAM -

http://www.as-kit.com/hardware/hardware_SAM7.html

Руководство пользователя по AVR микроконтроллерам XMEGA -

http://www.gaw.ru/html.cgi/txt/doc/micros/avr/arh xmega/index.html

Сайт компании ЭФО о микроконтроллерах различных производителей - http://www.mymcu.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Теория и применение микропроцессоров" предполагает использование следующего материально-технического обеспечения:

Перечень материально-технического обеспечения включает в себя:

- возможность доступа к электронным ресурсам сети Интернет в аудитории для самостоятельной работы и с личных мобильных устройств через WiFi-станцию;
- для поддержки мультимедиа-презентаций во время лекционных занятий используются следующие программные продукты: Microsoft Power Point в составе Microsoft Office 2007 (2 академические лицензии), OpenOffice.org 3.0 Impress (открытая лицензия GPL), Adobe Reader 9 (предоставлено физическим факультетом для 20 рабочих мест на условиях академической лицензии Microsoft);
- стационарное и переносное демонстрационное оборудование (мультимедийные проекторы, ноутбуки):
- лабораторного оборудования на основе микроконтроллеров AVR, ARM и xMOS ARMкомплекты лицензионного программного обеспечения AVR Studio412, JAR Embedded Workbench, AtmerStudio6.2,
- xTIMEcomposer13 для разработки приложений (бесплатные версии).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011800.62 "Радиофизика" и профилю подготовки Радиофизические измерения.

Программа дисциплины "Теория и применение микропроцессоров"; 011800.62 Радиофизика; доцент, к.н. (доцент) Насыров И.А. , ассистент, б/с Терешин С.Н.

Автор(ы):			
Насыров И.А			
Терешин С.Н			
"	201 _	_ Г.	
Рецензент(ы):			
Гумеров Р.И			
""	201_	_ г.	