МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

<u>Численные методы</u> Б3.Б.6

Направление подготовки: 010400.62 - Прикладная математика и информатика
Профиль подготовки: Математическая кибернетика
Квалификация выпускника: бакалавр
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Задворнов О.А., Волошановская Светлана Николаевна
Рецензент(ы):
-
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Задворнов О. А. Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:
Протокол заседания УМК No от "" 201г
Регистрационный No 910915

Казань 2014

> ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННО АНАЛИТИЧЕСКАЯ СИСТЕМА КНУ

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) заведующий кафедрой, д.н. (профессор) Задворнов О.А. кафедра вычислительной математики отделение прикладной математики и информатики , Oleg.Zadvornov@kpfu.ru ; Волошановская Светлана Николаевна

1. Цели освоения дисциплины

В рамках этого курса предполагается рассмотреть такие разделы, как численные методы решения задач математического анализа, линейной алгебры и обыкновенных дифференциальных уравнений. Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений. Введение в параллельные и векторные методы решения линейных систем.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б3.Б.6 Профессиональный" основной образовательной программы 010400.62 Прикладная математика и информатика и относится к базовой (общепрофессиональной) части. Осваивается на 3, 4 курсах, 6, 7 семестры.

Данная дисциплина относится к общепрофессиональным дисциплинам.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1 (профессиональные компетенции)	способность демонстрации общенаучных базовых знаний естественных наук, математики и информатики, понимание основных фактов, концепций, принципов, теорий, связанных с прикладной математикой и информатикой
ПК-3 (профессиональные компетенции)	способность понимать и применять в исследовательской и прикладной деятельности современный математический аппарат
ПК-7 (профессиональные компетенции)	способность собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным, профессиональным, социальным и этическим проблемам
ПК-8 (профессиональные компетенции)	способность формировать суждения о значении и последствиях своей профессиональной деятельности с учетом социальных, профессиональных и этических позиций

В результате освоения дисциплины студент:

- 1. должен знать:
- основные понятия, приемы и методы вычислительной математики
- 2. должен уметь:
- аппроксимировать функции
- вычислять интегралы численными методами
- применять итерационные методы для решения нелинейных уравнений
- применять численные методы для решения систем линейных уравнений

Читается на 3 курсе в 6 семестре для студентов обучающихся по направлению

[&]quot;Фундаментальная информатика и информационные технологии".

- применять численные методы для решения проблемы собственных значений
- применять разностные методы для решения краевых задач для обыкновенных дифференциальных уравнений
- 3. должен владеть:
- математическим аппаратом решения задач вычислительной математики
- 4. должен демонстрировать способность и готовность:
- применять полученные знания в своей профессиональной деятельности.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 5 зачетных(ые) единиц(ы) 180 часа(ов).

Форма промежуточного контроля дисциплины зачет в 6 семестре; экзамен в 7 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	МОДУЛЯ			Лекции	Практические занятия	, Лабораторные работы	
1.	Тема 1. Интерполяция функций алгебраическими многочленами. Интерполяционные полиномы Лагранжа и Ньютона. Оценка остаточного члена интерполяционных полиномов Лагранжа и Ньютона. Минимизация остаточного члена интерполирования.	6		2	0	0	домашнее задание
۷.	Тема 2. Среднеквадратическое приближение функций. Приближение функций методом наименьших квадратов.	6		4	0	0	домашнее задание
3.	Тема 3. Интерполяция сплайнами.	6		4	0	0	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные		Текущие формы контроля
	31.0			Лекции	Практические занятия	Лабораторные работы	
4.	Тема 4. Интерполяционные квадратурные формулы. Формулы Ньютона-Котеса. Формула трапеций и ее погрешность. Формула Симпсона. Остаточный член формулы Симпсона.	6		4	0	0	домашнее задание
5.	Тема 5. Квадратурные формулы типа Гаусса. Квадратурная формула Гаусса. Квадратурная формула Эрмита.	6		4	0	0	домашнее задание
6.	Тема 6. Итерационные методы решения нелинейных уравнений: метод простой итерации, метод Ньютона, метод секущих, метод хорд, метод релаксации.	6		4	0	0	домашнее задание
7.	Тема 7. Метод Гаусса решения систем линейных уравнений. Метод прогонки решения систем линейных уравнений с трехдиагональной матрицей. Метод отражений. Метод квадратного корня.	6		4	0	0	домашнее задание
8.	Тема 8. Итерационные методы решения систем линейных уравнений с симметричной и положительно определенной матрицей. Итерационные методы вариационного типа: метод покоординатного спуска, метод минимальных невязок.	6		6	0	0	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
				Лекции	Практические занятия	, Лабораторные работы	
9.	Тема 9. Полная и частичная проблема собственных чисел.	6		4	0	0	домашнее задание
10.	Тема 10. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения первого порядка.	7		6	0	0	домашнее задание
	Тема 11. Методы Адамса решения задачи Коши для обыкновенных дифференциальных уравнениЙ первого порядка.	7		6	0	0	домашнее задание
	Тема 12. Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений первого порядка.	7		6	0	0	домашнее задание
13.	Тема 13. Табулирование функции, заданной бесконечным рядом.	7		6	0	0	домашнее задание
14.	Тема 14. Интерполирование функций многочленами Лагранжа и Ньютона.	7		6	0	0	домашнее задание
15.	Тема 15. Численное дифференцирование функций.	7		6	0	0	домашнее задание
16.	Тема 16. Численное интегрирование функций.	7		6	0	0	домашнее задание
1	Тема 17. Численное решение нелинейного уравнения.	7		6	0	0	домашнее задание
18.	Тема 18. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения.	7		6	0	0	домашнее задание
	Тема . Итоговая форма контроля	6		0	0	0	зачет

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	модуля		-	Лекции	Практические занятия	лабораторные работы	
	Тема . Итоговая форма контроля	7		0	0	0	экзамен
	Итого			90	0	0	

4.2 Содержание дисциплины

Тема 1. Интерполяция функций алгебраическими многочленами. Интерполяционные полиномы Лагранжа и Ньютона. Оценка остаточного члена интерполяционных полиномов Лагранжа и Ньютона. Минимизация остаточного члена интерполирования. лекционное занятие (2 часа(ов)):

Интерполяция функций алгебраическими многочленами. Интерполяционные полиномы Лагранжа и Ньютона. Оценка остаточного члена интерполяционных полиномов Лагранжа и Ньютона. Минимизация остаточного члена интерполирования.

Тема 2. Среднеквадратическое приближение функций. Приближение функций методом наименьших квадратов.

лекционное занятие (4 часа(ов)):

Среднеквадратическое приближение функций. Приближение функций методом наименьших квадратов.

Тема 3. Интерполяция сплайнами.

лекционное занятие (4 часа(ов)):

Интерполяция сплайнами.

Тема 4. Интерполяционные квадратурные формулы. Формулы Ньютона-Котеса. Формула трапеций и ее погрешность. Формула Симпсона. Остаточный член формулы Симпсона.

лекционное занятие (4 часа(ов)):

Интерполяционные квадратурные формулы. Формулы Ньютона-Котеса. Формула трапеций и ее погрешность. Формула Симпсона. Остаточный член формулы Симпсона.

Тема 5. Квадратурные формулы типа Гаусса. Квадратурная формула Гаусса. Квадратурная формула Эрмита.

лекционное занятие (4 часа(ов)):

Квадратурные формулы типа Гаусса. Квадратурная формула Гаусса. Квадратурная формула Эрмита.

Тема 6. Итерационные методы решения нелинейных уравнений: метод простой итерации, метод Ньютона, метод секущих, метод хорд, метод релаксации.

лекционное занятие (4 часа(ов)):

Итерационные методы решения нелинейных уравнений: метод простой итерации, метод Ньютона, метод секущих, метод хорд, метод релаксации.

Тема 7. Метод Гаусса решения систем линейных уравнений. Метод прогонки решения систем линейных уравнений с трехдиагональной матрицей. Метод отражений. Метод квадратного корня.

лекционное занятие (4 часа(ов)):

Метод Гаусса решения систем линейных уравнений. Метод прогонки решения систем линейных уравнений с трехдиагональной матрицей. Метод отражений. Метод квадратного корня.

Тема 8. Итерационные методы решения систем линейных уравнений с симметричной и положительно определенной матрицей. Итерационные методы вариационного типа: метод покоординатного спуска, метод наискорейшего спуска, метод минимальных невязок.

лекционное занятие (6 часа(ов)):

Итерационные методы решения систем линейных уравнений с симметричной и положительно определенной матрицей. Итерационные методы вариационного типа: метод покоординатного спуска, метод наискорейшего спуска, метод минимальных невязок.

Тема 9. Полная и частичная проблема собственных чисел.

лекционное занятие (4 часа(ов)):

Полная и частичная проблема собственных чисел.

Тема 10. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения первого порядка.

лекционное занятие (6 часа(ов)):

Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения первого порядка.

Тема 11. Методы Адамса решения задачи Коши для обыкновенных дифференциальных уравнений первого порядка.

лекционное занятие (6 часа(ов)):

Методы Адамса решения задачи Коши для обыкновенных дифференциальных уравнениЙ первого порядка.

Тема 12. Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений первого порядка.

лекционное занятие (6 часа(ов)):

Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений первого порядка.

Тема 13. Табулирование функции, заданной бесконечным рядом.

лекционное занятие (6 часа(ов)):

Табулирование функции, заданной бесконечным рядом.

Тема 14. Интерполирование функций многочленами Лагранжа и Ньютона.

лекционное занятие (6 часа(ов)):

Интерполирование функций многочленами Лагранжа и Ньютона.

Тема 15. Численное дифференцирование функций.

лекционное занятие (6 часа(ов)):

Численное дифференцирование функций.

Тема 16. Численное интегрирование функций.

лекционное занятие (6 часа(ов)):

Численное интегрирование функций.

Тема 17. Численное решение нелинейного уравнения.

лекционное занятие (6 часа(ов)):

Численное решение нелинейного уравнения.

Тема 18. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения.

лекционное занятие (6 часа(ов)):

Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Интерполяция функций алгебраическими многочленами. Интерполяционные полиномы Лагранжа и Ньютона. Оценка остаточного члена интерполяционных полиномов Лагранжа и Ньютона. Минимизация остаточного члена интерполирования.	6		подготовка домашнего задания	3	домашнее задание
2.	Тема 2. Среднеквадратическое приближение функций. Приближение функций методом наименьших квадратов.	6		подготовка домашнего задания	3	домашнее задание
3.	Тема 3. Интерполяция сплайнами.	6		подготовка домашнего задания	3	домашнее задание
	Тема 4. Интерполяционные квадратурные формулы. Формулы Ньютона-Котеса. Формула трапеций и ее погрешность. Формула Симпсона. Остаточный член формулы Симпсона.	6		подготовка домашнего задания	3	домашнее задание
5.	Тема 5. Квадратурные формулы типа Гаусса. Квадратурная формула Гаусса. Квадратурная формула Эрмита.	6		подготовка домашнего задания	3	домашнее задание
6.	Тема 6. Итерационные методы решения нелинейных уравнений: метод простой итерации, метод Ньютона, метод секущих, метод хорд, метод релаксации.	6		подготовка домашнего задания	3	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
7.	Тема 7. Метод Гаусса решения систем линейных уравнений. Метод прогонки решения систем линейных уравнений с трехдиагональной матрицей. Метод квадратного корня.	6		подготовка домашнего задания	3	домашнее задание
8.	Тема 8. Итерационные методы решения систем линейных уравнений с симметричной и положительно определенной матрицей. Итерационные методы вариационного типа: метод покоординатного спуска, метод минимальных невязок.	6		подготовка домашнего задания	3	домашнее задание
9.	Тема 9. Полная и частичная проблема собственных чисел.	6		подготовка домашнего задания	3	домашнее задание
10.	Тема 10. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения первого порядка.	7		подготовка домашнего задания	3	домашнее задание
11.	Тема 11. Методы Адамса решения задачи Коши для обыкновенных дифференциальных уравнениЙ первого порядка.	7		подготовка домашнего задания	3	домашнее задание
12.	Тема 12. Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений первого порядка.	7		подготовка домашнего задания	3	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
13.	Тема 13. Табулирование функции, заданной бесконечным рядом.	7		подготовка домашнего задания	3	домашнее задание
14.	Тема 14. Интерполирование функций многочленами Лагранжа и Ньютона.	7		подготовка домашнего задания	3	домашнее задание
15.	Тема 15. Численное дифференцирование функций.	7		подготовка домашнего задания	3	домашнее задание
16.	Тема 16. Численное интегрирование функций.	7		подготовка домашнего задания	3	домашнее задание
17.	Тема 17. Численное решение нелинейного уравнения.	7		подготовка домашнего задания	3	домашнее задание
18.	Тема 18. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения.	7		подготовка домашнего задания	3	домашнее задание
	Итого				54	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных и практических занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. Причем конспект лекций, который остается у студента в результате прослушивания лекции не может заменить учебник. Его цель - формулировка основных утверждений и определений. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебнике. Список литературы разделен на две категории: необходимый для сдачи экзамена минимум и дополнительная литература.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для более глубокого понимания разделов дисциплины "Вычислительные методы" на основе решения задач и упражнений, иллюстрирующих доказываемые теоретические положения, а также развитие абстрактного мышления и способности самостоятельно доказывать частные утверждения.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы.

Кроме того, самостоятельная работа включает подготовку к экзамену. При подготовке к сдаче экзамена весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к экзамена, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда всегда будет резерв времени.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Интерполяция функций алгебраическими многочленами. Интерполяционные полиномы Лагранжа и Ньютона. Оценка остаточного члена интерполяционных полиномов Лагранжа и Ньютона. Минимизация остаточного члена интерполирования.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 2. Среднеквадратическое приближение функций. Приближение функций методом наименьших квадратов.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 3. Интерполяция сплайнами.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 4. Интерполяционные квадратурные формулы. Формулы Ньютона-Котеса. Формула трапеций и ее погрешность. Формула Симпсона. Остаточный член формулы Симпсона.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 5. Квадратурные формулы типа Гаусса. Квадратурная формула Гаусса. Квадратурная формула Эрмита.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 6. Итерационные методы решения нелинейных уравнений: метод простой итерации, метод Ньютона, метод секущих, метод хорд, метод релаксации.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 7. Метод Гаусса решения систем линейных уравнений. Метод прогонки решения систем линейных уравнений с трехдиагональной матрицей. Метод отражений. Метод квадратного корня.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 8. Итерационные методы решения систем линейных уравнений с симметричной и положительно определенной матрицей. Итерационные методы вариационного типа: метод покоординатного спуска, метод наискорейшего спуска, метод минимальных невязок.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 9. Полная и частичная проблема собственных чисел.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 10. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения первого порядка.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 11. Методы Адамса решения задачи Коши для обыкновенных дифференциальных уравнениЙ первого порядка.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 12. Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений первого порядка.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 13. Табулирование функции, заданной бесконечным рядом.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 14. Интерполирование функций многочленами Лагранжа и Ньютона.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 15. Численное дифференцирование функций.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 16. Численное интегрирование функций.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 17. Численное решение нелинейного уравнения.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема 18. Метод Рунге-Кутта решения задачи Коши для обыкновенного дифференциального уравнения.

домашнее задание, примерные вопросы:

Решение индивидуальных задач по изучаемой теме

Тема. Итоговая форма контроля

Тема. Итоговая форма контроля

Примерные вопросы к зачету и экзамену:

По данной дисциплине предусмотрено проведение экзамена. Примерные вопросы для экзамена - Приложение1.

7.1. Основная литература:

- 1. Численные методы. Курс лекций: Учебное пособие/ Срочко В.А. СПб.: Издательство "Лань", 2010. 208 с. ISBN 978-5-8114-1014-9 e.lanbook.com http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=378
- 2. Лекции по численным методам математической физики: Учебное пособие / М.В. Абакумов, А.В. Гулин; МГУ им. М.В. Ломоносова М.: НИЦ ИНФРА-М, 2013. 158 с.: 60х88 1/16. (Высшее образование: Бакалавриат). (обложка) ISBN 978-5-16-006108-5, 500 экз. www.znanium.com http://znanium.com/go.php?id=364601
- 3. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.:Бином. Лаборатория знаний, 2012. 636 с.

http://e.lanbook.com/books/element.php?pl1 id=4397

- 4. Глазырина Л. Л. Введение в численные методы: 3. учебное пособие / Л. Л. Глазырина, М. М. Карчевский; Казан. федер. ун-т.?Казань: Казанский университет, 2012.?121 с.
- 5. Бахвалов Н. С. Численные методы: учеб. пособие для студентов физ.-мат. спец. вузов / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков; Моск. гос. ун-т.?4-е изд..?Москва: БИНОМ. Лаб. знаний, 2006.?636 с.
- 6. Самарский А. А. Введение в численные методы: учеб. пособие для вузов / А. А. Самарский; Моск. гос. ун-т им. М. В. Ломоносова.? 3-е изд., стер..?Санкт-Петербург: Лань, 2005.?288 с.

7.Бахвалов Н.С., Лапин А.В., Чижонков Е.В. Численные методы в задачах и упражнениях. - М.:Бином. Лаборатория знаний, 2010. - 240 с. URL: http://e.lanbook.com/books/element.php?pl1 id=4399

7.2. Дополнительная литература:

- 1. Лапчик, М. П. Численные методы: учеб. пособие для студ. вузов / М. П. Лапчик, М. И. Рагулина, Е. К. Хеннер; под ред. М. П. Лапчика.?5-е изд., стер..?М.: Академия, 2009.?384 с
- 2. Бахвалов Н. С. Численные методы в задачах и упражнениях: учебное пособие / Н. С. Бахвалов, А. В. Лапин, Е. В. Чижонков; Под ред. В. А. Садовничего.? Москва: Высшая школа, 2000.? 190 с..? (Высшая математика).? Библиогр.: с. 188.? ISBN 5-06-003684-7: 29.00.
- 3. Каханер, Дэвид. Численные методы и программное обеспечение: перевод с английского / Д. Каханер, К. Моулер, С. Нэш; Пер. Х. Д. Икрамова.?Издание 2-е, стереотипное.?Москва: Мир, 2001.?575 с.: ил..?Пер. изд.: Numerical Methods and Software / D. Kahaner, C. Moler, St. Nash (Prentice-Hall International, 1989).?Библиогр.: с. 554-559.?Указ.: с. 560-570.?ISBN 5-03-003392-0 (рус).?ISBN 0-13-626672-X (англ).

7.3. Интернет-ресурсы:

Портал математических интернет-ресурсов - http://www.math.ru/
Портал математических интернет-ресурсов - http://www.allmath.com/
Портал ресурсов по естественно-научным дисциплинам - http://en.edu.ru/
Сайт образовательных ресурсов по математике - http://www.exponenta.ru/
Справочник по компьютерной математике - http://www.users.kaluga.ru/math/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Численные методы" предполагает использование следующего материально-технического обеспечения:

Лекции и практические занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом(маркером).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010400.62 "Прикладная математика и информатика" и профилю подготовки Математическая кибернетика .

Программа дисциплины "Численные методы"; 010400.62 Прикладная математика и информатика; заведующий кафедрой, д.н. (профессор) Задворнов О.А.

Автор(ы):		
Задворнов	O.A	
Волошанов	ская Светлана Николаевна	
""	201 г.	
Рецензент((ы):	
" "	201 г.	