МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

Специализированные математические пакеты М2.В.4

Направление подготовки: 010400.68 - Прикладная математика и информатика
Профиль подготовки: Математическое моделирование
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):

Бахтиева Л.У.
Рецензент(ы):
Плещинский Н.Б.

СОГЛАСОВАНО:		
Заведующий (ая) кафедрой: Плещинский Протокол заседания кафедры No от		201г
Учебно-методическая комиссия Институт технологий: Протокол заседания УМК No от "		ной математики и информационных 201г
Регистрационный No 988414	Казань	

казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Бахтиева Л.У. Кафедра прикладной математики отделение прикладной математики и информатики , Lyalya.Bakhtieva@kpfu.ru

1. Цели освоения дисциплины

Дисциплина принадлежит циклу дисциплин основной образовательной программы высшего профессионального образования по направлению: 010400.68 "Прикладная математика и информатика (Математическое моделирование". Цель освоения дисциплины - изучение современных компьютерных технологий в области математических вычислений и приобретение навыков применения специализированных математических пакетов в научной деятельности.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.4 Профессиональный" основной образовательной программы 010400.68 Прикладная математика и информатика и относится к вариативной части. Осваивается на 1 курсе, 1, 2 семестры.

Курс рассчитан на магистрантов, имеющих подготовку по дисциплинам "Математический анализ", "Алгебра и геометрия", "Дифференциальные уравнения", "Уравнения математической физики", "Информатика". Предполагается, что студенты знакомы с основами математического моделирования и дифференциальными уравнениями, описывающими физические процессы. Знания, навыки и умения, приобретенные в результате прохождения курса, будут востребованы при изучении специальных курсов, касающихся сложных математических вычислений с применением ЭВМ, а также при выполнении научных работ, необходимых для получения квалификации.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
(профессиональные	способность участвовать в деятельности профессиональных сетевых сообществ по конкретным направлениям;
(профессиональные	способность осознавать корпоративную политику в области повышения социальной ответственности бизнеса перед обществом, принимать участие в ее развитии;
	способность проводить научные исследования и получать новые научные и прикладные результаты.

В результате освоения дисциплины студент:

- 1. должен знать:
- содержание действующих российских и международных стандартов в области прикладных программных средств;
- состояние современного рынка прикладных программных продуктов;
- основы математического моделирования и решения практических задач математической физики с применением ППП;
- основные подходы к интерпретации и визуализации результатов численных расчетов;

- виды пакетов прикладных программ для использования их в своей профессиональной деятельности.
- 2. должен уметь:
- работать с современным программным обеспечением компьютера;
- применять современные пакеты прикладных программ для решения задач математического моделирования физических процессов;
- визуализировать и интерпретировать результаты вычислительного эксперимента, полученные с применением ППП.
- 3. должен владеть:
- технологией применения пакетов прикладных программ для решения научных и практических задач.
- 4. должен демонстрировать способность и готовность:
- применять полученные знания в своей учебной и научной деятельности.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 6 зачетных(ые) единиц(ы) 216 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре; зачет во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра		Текущие формы контроля		
	Модуля		l	Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Теоретические основы проектирования ППП	1	1	0	0	2	научный доклад
2.	Тема 2. Сравнительный анализ современных математических пакетов	1	2	0	0		письменная работа
3.	Тема 3. Основные возможности системы Матлаб. Работа в режиме прямых вычислений	1	3	0	0	2	домашнее задание
4.	Тема 4. Вычисление корней полинома и нулей функции	1	4	0	0	2	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
				Лекции	практические занятия	лабораторные работы	
5.	Тема 5. Работа с матрицами, системы алгебраических уравнений	1	5	0	0	2	контрольная точка
6.	Тема 6. Численное дифференцирование и интегрирование	1	6	0	0	2	домашнее задание
7.	Тема 7. Графика в системе Matlab	1	7	0	0	2	презентация
8.	Тема 8. Графический интерфейс пользователя	1	8	0	0	2	отчет
9.	Тема 9. Работа с прикладными пакетами системы Матлаб	2	1	0	0	4	письменная работа
10.	Тема 10. Решение краевых задач в пакете PDE. Задание области и граничных условий	2	2	0	0	4	домашнее задание
11.	Тема 11. Решение краевых задач в пакете PDE. Исходное уравнение задачи	2	3	0	0	4	домашнее задание
12.	Тема 12. Метод конечных элементов и его реализация в пакете PDE.	2	4	0	0	4	научный доклад
13.	Тема 13. Визуализация решения, построение поверхности u(x,y)	2	5	0	0	4	домашнее задание
14.	Тема 14. Численные методы решения дифференциальных уравнений и их реализация в системе Matlab	2	6-7	0	0	8	письменная работа
15.	Тема 15. Основные возможности системы Maple. Обзор встроенных пакетов функций	2	8	0	0	4	научный доклад
16.	Teма 16. Пакет реализации степенных разложений powseries и пакет ортогональных многочленов orthopoly	2	9-10	0	0	8	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр Недел семест			Виды и ча аудиторной ра их трудоемк (в часах	Текущие формы контроля	
				Лекции	Практические занятия	Лабораторные работы	·
	Тема 17. Пакет финансово-экономичес функций finance	ких2	11	0	0	4	домашнее задание
18.	Тема 18. Аппроксимация и сплайны в системе Maple	2	12	0	0	4	домашнее задание
	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Тема . Итоговая форма контроля	2		0	0	0	зачет
	Итого			0	0	64	

4.2 Содержание дисциплины

Тема 1. Теоретические основы проектирования ППП

лабораторная работа (2 часа(ов)):

Проектирование математических пакетов прикладных программ, теоретические основы для их создания

Тема 2. Сравнительный анализ современных математических пакетов *пабораторная работа (2 часа(ов)):*

Краткий обзор наиболее популярных математических пакетов Maple, Mathematica, Mathcad, Matlab и их аналогов

Тема 3. Основные возможности системы Матлаб. Работа в режиме прямых вычислений *лабораторная работа (2 часа(ов)):*

Выполнение заданий, связанных с вычислениями в режиме прямых вычислений на ЭВМ

Тема 4. Вычисление корней полинома и нулей функции лабораторная работа (2 часа(ов)):

Выполнение заданий, связанных с вычислением корней полиномов и нулей функции на ЭВМ

Тема 5. Работа с матрицами, системы алгебраических уравнений *пабораторная работа (2 часа(ов)):*

Решение линейных и нелинейных систем алгебраических уравнений в системе Матлаб

Тема 6. Численное дифференцирование и интегрирование *пабораторная работа (2 часа(ов)):*

Поиск производных и интегралов с помощью функций системы Матлаб

Тема 7. Графика в системе Matlab

лабораторная работа (2 часа(ов)):

Построение кривых линий и поверхностей

Тема 8. Графический интерфейс пользователя

лабораторная работа (2 часа(ов)):

Принципы разработки графического интерфейса пользователя. Примеры. Разработка собственного интерфейса

Тема 9. Работа с прикладными пакетами системы Матлаб *лабораторная работа (4 часа(ов)):*

Знакомство с некоторыми пакетами системы: Spline Toolbox, Financial Toolbox и др.

Tema 10. Решение краевых задач в пакете PDE. Задание области и граничных условий

лабораторная работа (4 часа(ов)):

Изучение интерфейса пакета PDE. Работа с инструментами построения областей и задания краевых условий

Тема 11. Решение краевых задач в пакете PDE. Исходное уравнение задачи *пабораторная работа (4 часа(ов)):*

Решение задач Неймана и Дирихле. Канонический вид исходного уравнения

Тема 12. Метод конечных элементов и его реализация в пакете PDE.

лабораторная работа (4 часа(ов)):

Основные положения метода конечных элементов. Триангуляция

Тема 13. Визуализация решения, построение поверхности u(x,y)

лабораторная работа (4 часа(ов)):

Различные виды визуализации решения в PDE. 3-D график решения, его анализ

Teма 14. Численные методы решения дифференциальных уравнений и их реализация в системе Matlab

лабораторная работа (8 часа(ов)):

Функции решения задачи Коши и краевых задач. Примеры

Тема 15. Основные возможности системы Maple. Обзор встроенных пакетов функций *пабораторная работа (4 часа(ов)):*

Перечень пакетов системы Maple 7, их краткая характеристика

Tema 16. Пакет реализации степенных разложений powseries и пакет ортогональных многочленов orthopoly

лабораторная работа (8 часа(ов)):

Разложение функций в степенные ряды с помощью системы Maple 7

Тема 17. Пакет финансово-экономических функций finance

лабораторная работа (4 часа(ов)):

Финансовые функции системы Maple 7

Тема 18. Аппроксимация и сплайны в системе Maple

лабораторная работа (4 часа(ов)):

Аппроксимация многочленами, сплайны в системе Maple 7

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 1. Теоретические основы проектирования ППП	1	1	подготовка к научному докладу	12	научный доклад
	Тема 2. Сравнительный анализ современных математических пакетов	1	2	подготовка к письменной работе	12	письменная работа
	Тема 3. Основные возможности системы Матлаб. Работа в режиме прямых вычислений	1	_	подготовка домашнего задания	12	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
4.	Тема 4. Вычисление корней полинома и нулей функции	1	4	подготовка домашнего задания	12	домашнее задание
5.	Тема 5. Работа с матрицами, системы алгебраических уравнений	1	5	подготовка к контрольной точке	12	контрольная точка
6.	Тема 6. Численное дифференцирование и интегрирование	1	6	подготовка домашнего задания	12	домашнее задание
7.	Тема 7. Графика в системе Matlab	1	7	подготовка к презентации	12	презентация
8.	Тема 8. Графический интерфейс пользователя	1	8	подготовка к отчету	8	отчет
9.	Тема 9. Работа с прикладными пакетами системы Матлаб	2	1	подготовка к письменной работе	5	письменная работа
	Тема 10. Решение краевых задач в пакете PDE. Задание области и граничных условий	2	2	подготовка домашнего задания	5	домашнее задание
11.	Тема 11. Решение краевых задач в пакете PDE. Исходное уравнение задачи	2	3	подготовка домашнего задания	5	домашнее задание
12.	Тема 12. Метод конечных элементов и его реализация в пакете PDE.	2	4	подготовка к научному докладу	5	научный доклад
13.	Тема 13. Визуализация решения, построение поверхности u(x,y)	2	5	подготовка домашнего задания	5	домашнее задание
14.	Тема 14. Численные методы решения дифференциальных уравнений и их реализация в системе Matlab	2	6-7	подготовка к письменной работе	10	письменная работа
15.	Тема 15. Основные возможности системы Maple. Обзор встроенных пакетов функций	2	8	подготовка к научному докладу	5	научный доклад

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
16.	Тема 16. Пакет реализации степенных разложений powseries и пакет ортогональных многочленов orthopoly	2		подготовка домашнего задания	10	домашнее задание
17.	Тема 17. Пакет финансово-экономичес функций finance	ких2	11	подготовка домашнего задания	5	домашнее задание
18.	Тема 18. Аппроксимация и сплайны в системе Maple	2		подготовка домашнего задания	5	домашнее задание
	Итого				152	

5. Образовательные технологии, включая интерактивные формы обучения

Широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, научных докладов, презентаций) в сочетании с внеаудиторной работой

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Теоретические основы проектирования ППП

научный доклад, примерные вопросы:

Теоретические основы для проектирования специализированных математических пакетов, разбор некоторых конкретных функций математических пакетов

Тема 2. Сравнительный анализ современных математических пакетов

письменная работа, примерные вопросы:

Краткий обзор математических пакетов Matlab, Mathematica, Mathcad, Maple и их аналогов, сравнительный анализ возможностей

Тема 3. Основные возможности системы Матлаб. Работа в режиме прямых вычислений домашнее задание, примерные вопросы:

Выполнение заданий, связанных с работой в режиме прямых вычислений на ЭВМ

Тема 4. Вычисление корней полинома и нулей функции

домашнее задание, примерные вопросы:

Выполнение заданий, связанных с вычислением корней полиномов и нулей функции на ЭВМ

Тема 5. Работа с матрицами, системы алгебраических уравнений

контрольная точка, примерные вопросы:

Решение линейных и нелинейных систем алгебраических уравнений средствами системы Матлаб

Тема 6. Численное дифференцирование и интегрирование

домашнее задание, примерные вопросы:

Вычисление производных и интегралов средствами системы Матлаб

Тема 7. Графика в системе Matlab

презентация, примерные вопросы:

Построение различных кривых и поверхностей средствами системы Матлаб

Тема 8. Графический интерфейс пользователя

отчет, примерные вопросы:

Разработка собственного графического интерфейса для презентации построенных ранее графиков

Тема 9. Работа с прикладными пакетами системы Матлаб

письменная работа, примерные вопросы:

Обзор некоторых встроенных пакетов системы Матлаб

Тема 10. Решение краевых задач в пакете PDE. Задание области и граничных условий домашнее задание, примерные вопросы:

Работа с инструментами для построения областей и задания краевых условий

Teма 11. Решение краевых задач в пакете PDE. Исходное уравнение задачи

домашнее задание, примерные вопросы:

Запись исходного уравнения в форме, позволяющей решить его в пакете PDE Toolbox

Тема 12. Метод конечных элементов и его реализация в пакете PDE.

научный доклад, примерные вопросы:

Основные положения метода конечных элементов, понятие триангуляции, Реализация метода в пакете PDE

Тема 13. Визуализация решения, построение поверхности u(x,y)

домашнее задание, примерные вопросы:

Графический анализ решения, полученного в пакете PDE, 3-D график решения

Тема 14. Численные методы решения дифференциальных уравнений и их реализация в системе Matlab

письменная работа, примерные вопросы:

Примеры использования некоторых функций системы Матлаб при решении задач Коши и краевых задач.

Тема 15. Основные возможности системы Maple. Обзор встроенных пакетов функций научный доклад, примерные вопросы:

Перечень основных пакетов системы Maple, их краткая характеристика

Tema 16. Пакет реализации степенных разложений powseries и пакет ортогональных многочленов orthopoly

домашнее задание, примерные вопросы:

Разложить заданную функцию в степенной ряд, аппроксимировать функцию одним из ортогональных многочленов

Тема 17. Пакет финансово-экономических функций finance

домашнее задание, примерные вопросы:

Произвести финансовые расчеты с помощью одной из функций пакета Finance

Тема 18. Аппроксимация и сплайны в системе Maple

домашнее задание, примерные вопросы:

Построить сплайны различных порядков для заданного массива точек

Тема. Итоговая форма контроля

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

По данной дисциплине предусмотрен зачет. Вопросы для зачета - Приложение 1.

Пример зачетного задания:

Решить в системе Матлаб задачу Коши: $y'' + 2y' + 10y = \sin x$; y(a) = c, y'(a) = d, $x \sqcup [a,b]$, к решению применить метод Эйлера, построить график функции y(x).

Указание: записать уравнение в виде системы: y' = z, $z' = -2z - 10y + \sin x$,

7.1. Основная литература:

- 1.Тарасевич Ю. Ю. Математическое и компьютерное моделирование: вводный курс: учебное пособие для студентов высших учебных заведений, обучающихся по специальности 030100 "Информатика" / Ю. Ю. Тарасевич.-Изд. 6-е.-Москва: URSS: [ЛИБРОКОМ, 2013].-148 с.
- 2. Пакеты прикладных программ: Учебное пособие / С.В. Синаторов. М.: Альфа-М: НИЦ Инфра-М, 2012. 256 с.: ил.; 60х90 1/16. (ПРОФИль). (переплет) ISBN 978-5-98281-275-9, 1000 http://znanium.com/bookread.php?book=310140
- 3. Word, Excel, Power Point: Учеб. пособие / В.В. Мотов. М.: ИНФРА-М, 2009. 206 с.: 60х90 1/16. (Высшее образование). (переплет) ISBN 978-5-16-003495-9, 2000 http://znanium.com/bookread.php?book=151636
- 4. Практикум по Microsoft Office 2007 (Word, Excel, Access), PhotoShop: Учебно-методическое пособие / Л.В. Кравченко. М.: Форум: НИЦ ИНФРА-М, 2013. 168 с.: 70х100 1/16. (обложка) ISBN 978-5-91134-656-0, 500 www.znanium.com http://znanium.com/bookread.php?book=408972
- 5. Игнатьев Ю. Г. Математическое и компьютерное моделирование фундаментальных объектов и явлений в системе компьютерной математики Maple / Ю. Г. Игнатьев; Казан. (Приволж.) федер. ун-т, Ин-т математики и механики им. Н. И. Лобачевского.-Казань: Казанский университет, 2014.-297 с.: ил., цв. ил.; 30.-Библиогр.: с. 284-297 (159 назв.).
- 6. Игнатьев, Юрий Геннадиевич. Математическое и компьютерное моделирование фундаментальных объектов и явлений в системе компьютерной математики Maple [Текст: электронный ресурс]: [лекции для школы по математическому моделированию] / Ю. Г. Игнатьев; Казан. (Приволж.) федер. ун-тет, Ин-т математики и механики им. Н. И. Лобачевского .? Электронные данные (1 файл: 19,09 Мб) .? (Казань: Казанский федеральный университет, 2014) .? Загл. с экрана .? Для 8-го, 9-го и 10-го семестров .? Режим доступа: открытый. <URL:http://libweb.ksu.ru/ebooks/05-IMM/05_120_000443.pdf>.
- 7. Бадриев И.Б., Бандеров В.В., Задворнов О.А. Разработка графического пользовательского интерфейса в среде MatLab. Казань: Изд-во Казанского федерального университета, 2010. 113 с.

http://old.kpfu.ru/f9/bin_files/GUI_MatLab.pdf

7.2. Дополнительная литература:

- 1. Липаев, В. В. Программная инженерия: методол. основы/ В.В. Липаев; Гос. ун-т Высш. шк. экономики.?Москва: ТЕИС, 2006.?605 с.
- 2. Мацяшек, Лешек А. Практическая программная инженерия на основе учебного примера / Л. А. Мацяшек, Б. Л. Лионг; пер. с англ. А. М. Епанешникова и В. А. Епанешникова.?Москва: БИНОМ. Лаборатория знаний, 2009.?956 с.
- 3. Боггс, Уэнди. UML и Rational Rose 2002 = Mastering UML with Rational Rose 2002 / У. Боггс, М. Боггс; [Переводчик М. Кузьмин].?Москва: Лори, 2004.?XVIII, 509 с. ISBN 5-85582-214-1, 3200.

7.3. Интернет-ресурсы:

Методическое пособие по системе Матлаб http://kpfu.ru//staff_files/F517851160/metod_sk_225.pdf

Обзор математических пакетов - http://pers.narod.ru/study/mathcad/01.html

Пакет Математика: учебное пособие - http://window.edu.ru/resource/090/24090/files/math1st.pdf

Построение графиков в пакете Математика - http://library.wolfram.com/graphics/

Решение типовых задач в пакете Математика - http://novamedium.infolib.mexmat.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Специализированные математические пакеты" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Лабораторные занятия по дисциплине проводятся в компьютерных классах, оснащенных доской и маркерами, для проведения презентаций и научных докладов необходима мультимедийная аудитория

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010400.68 "Прикладная математика и информатика" и магистерской программе Математическое моделирование .

Программа дисциплины "Специализированные математические пакеты"; 010400.68 Прикладная математика и информатика; доцент, к.н. (доцент) Бахтиева Л.У.

Aв	тор(ы):			
Ба	хтиева Л.	/		
"	"	201	Г.	
				
Pe	цензент(ь	ı):		
Пл	ещинский	́Н.Б.		
"	**	201	Г.	