МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Физика волновых процессов Б3.Б.7

ŀ	Направление	подготовки:	<u>01</u>	18	<u> 300</u>	.62	<u>- F</u>	Радиос	ризика

Профиль подготовки: Специальные радиотехнические системы

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Насыров И.А., Насыров А.М.

Рецензент(ы): Овчинников М.Н.

\sim	гп.	A	$\mathbf{D} \mathbf{A}$	\Box
CO	1 / 1/	ACO	DA	пО

	
Заведующий(ая) кафедрой: Овчинников М. Н. Протокол заседания кафедры No от ""	201
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от ""	201г
Регистрационный No 627114	

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) Насыров А.М.; доцент, к.н. (доцент) Насыров И.А. Кафедра радиоэлектроники Отделение радиофизики и информационных систем, Igor.Nasyrov@kpfu.ru

1. Цели освоения дисциплины

Целью освоения дисциплины (модуля) Физика волновых процессов является изучение фундаментальных основ распространения волн различной природы в линейных и нелинейных средах. Основное внимание уделено распространению электромагнитных волн диапазона радиочастот.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б3.Б.7 Профессиональный" основной образовательной программы 011800.62 Радиофизика и относится к базовой (общепрофессиональной) части. Осваивается на 3 курсе, 6 семестр.

Для освоения содержания дисциплины необходимы знания по следующим курсам: "Электродинамика", "Основы теории колебаний".

Курс предназначен для студентов 3 курса, 6 семестр

Б3.Б.7 профессиональный цикл

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-11 (общекультурные компетенции)	способность собирать, обобщать и интерпретировать с использованием современных информационных технологий информацию, необходимую для формирования суждений по соответствующим специальным, научным, социальным и этическим проблемам
ОК-12 (общекультурные компетенции)	способность к правильному использованию общенаучной и специальной терминологии

В результате освоения дисциплины студент:

1. должен знать:

физическую сущность процессов и явлений, происходящих при распространении волн в однородных и неоднородных средах;

2. должен уметь:

самостоятельно использовать основные методы радиофизических измерений;

3. должен владеть:

методами проведения аналитических и численных расчетов;

4. должен демонстрировать способность и готовность:

проведения аналитических и численных расчетов

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 6 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	Модуля			Лекции	Практические занятия	лабораторные работы	·
1.	Тема 1. Введение. Волновые уравнения в различных средах.	6	1	2	0	0	
2.	Тема 2. Упругие волны в жидкостях, газах и твердых телах.	6	2-3	0	0	6	устный опрос
3.	Тема 3. Распространение волн в неоднородных средах.	6	2	2	0	0	
4.	Тема 4. Распространение волн в неоднородных средах.	6	3	2	0	0	контрольная точка
5.	Тема 5. Отражение и преломление плоских электромагнитных волн на границе раздела сред.	6	4	2	0	0	
6.	Тема 6. Распространение электромагнитных волн в средах с частотной (временной) дисперсией.	6	5-6	0	0	2	устный опрос
7.	Тема 7. Волны в периодических структурах.	6	7	2	0	0	
8.	Тема 8. Излучение электромагнитных волн.	6	8	2	0	0	
9.	Тема 9. Распространение звуковых волн.	6	9	2	0	0	

N	Раздел Дисциплины/	Семестр	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах)	Текущие формы контроля	
	Модуля			Лекции	Практические занятия	Лабораторные работы	•
10.	Тема 10. Электромагнитные волны в анизотропных средах.	6	10-14	2	0	6	устный опрос
11.	Тема 11. Волны в нелинейных средах.	6	15	2	0	0	
12.	Тема 12. Самовоздействие плоских волн.	6	16-17	2	0	6	устный опрос
13.	Тема 13. Нелинейные явления в ионосфере при распространении мощных радиоволн.	6	18	2	0	0	
	Тема . Итоговая форма контроля	6		0	0	0	экзамен
	Итого			22	0	20	

4.2 Содержание дисциплины

Тема 1. Введение. Волновые уравнения в различных средах.

лекционное занятие (2 часа(ов)):

Волновые уравнения в различных средах. Поток энергии, Основные характеристики волнового процесса. Плоские сферические волны

Тема 2. Упругие волны в жидкостях, газах и твердых телах.

лабораторная работа (6 часа(ов)):

Упругие волны в жидкостях, газах и твердых телах. Основные свойства. Дифракция на ультразвуке

Тема 3. Распространение волн в неоднородных средах.

лекционное занятие (2 часа(ов)):

Распространение волн в неоднородных средах. Неоднородные среды. Приближение геометрической оптики. Геометрическая оптика слоисто-неоднородных сред. Рефракция лучей в плоско-слоистой среде. Условия применимости приближения геометрической оптики. Свойства тропосферы и ионосферы. Распространение радиоволн в тропосфере и ионосфере.

Тема 4. Распространение волн в неоднородных средах.

лекционное занятие (2 часа(ов)):

Распространение волн в неоднородных средах. Неоднородные среды. Приближение геометрической оптики. Геометрическая оптика слоисто-неоднородных сред. Рефракция лучей в плоско-слоистой среде. Условия применимости приближения геометрической оптики. Свойства тропосферы и ионосферы. Распространение радиоволн в тропосфере и ионосфере.

Тема 5. Отражение и преломление плоских электромагнитных волн на границе раздела сред.

лекционное занятие (2 часа(ов)):

Отражение и преломление плоских электромагнитных волн на границе раздела сред. Отражение и преломление волн с горизонтальной, вертикальной и произвольной поляризацией. Коэффициенты отражения в различных средах, граничные условия при отражении.

Тема 6. Распространение электромагнитных волн в средах с частотной (временной) дисперсией.

лабораторная работа (2 часа(ов)):

Распространение электромагнитных волн в средах с частотной (временной) дисперсией. Дисперсия волн. Дисперсные и бездисперсные моды. Уравнения электромагнитного поля в средах с частотной дисперсией. Нормальная и аномальная дисперсия волн. Фазовая групповая скорости волн.

Тема 7. Волны в периодических структурах.

лекционное занятие (2 часа(ов)):

Волны в периодических структурах. Волны в сплошной среде со слабыми периодическими неоднородностями. Волны в дискретных структурах. Дискретные электрические линии Линия с параметрами зависящими от координат

Тема 8. Излучение электромагнитных волн.

лекционное занятие (2 часа(ов)):

Излучение электромагнитных волн. Ближняя и дальняя зоны. Сопротивление излучения. Формирование диаграммы направленности для радиоволн различной поляризации.

Тема 9. Распространение звуковых волн.

лекционное занятие (2 часа(ов)):

Распространение звуковых волн. Излучение звука; акустический импеданс излучателя; присоединенная масса; сопротивление излучения.

Тема 10. Электромагнитные волны в анизотропных средах.

лекционное занятие (2 часа(ов)):

Электромагнитные волны в анизотропных средах. Общие закономерности распространения электромагнитных волн в анизотропных средах. Распространение плоских высокочастотных волн в магнитоактивной плазме. Частные случаи распространения радиоволн в магнитоактивной плазме, продольное и поперечное распространение.

лабораторная работа (6 часа(ов)):

Эффект Фарадея. Эффект Керра.

Тема 11. Волны в нелинейных средах.

лекционное занятие (2 часа(ов)):

Волны в нелинейных средах. Критерии применимости линейных моделей при распространении волн. Уравнение для нелинейных волн в средах с дисперсией. Методы решения нелинейных волновых уравнений Эффекты нелинейного распространения электромагнитных волн (обзор экспериментальных результатов.)

Тема 12. Самовоздействие плоских волн.

лекционное занятие (2 часа(ов)):

Самовоздействие плоских волн. Нелинейное поглощение волны. Нелинейное просветление среды. Самофокусировка и дефокусировка волн. Нелинейная дисперсия. Нелинейное взаимодействие волн. Эффект кросс-модуляции

лабораторная работа (6 часа(ов)):

Приборы на основе поверхностных акустических волн.

Тема 13. Нелинейные явления в ионосфере при распространении мощных радиоволн. *лекционное занятие (2 часа(ов)):*

Обзорная лекция по нелинейным явлениям в ионосфере при распространении мощных радиоволн.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Упругие волны в жидкостях, газах и твердых телах.	6	ン3	подготовка к устному опросу	6	устный опрос
	Тема 4. Распространение волн в неоднородных средах.	6	3	подготовка к контрольной точке	4	контрольная точка
				подготовка к устному опросу	2	устный опрос
ın	Тема 6. Распространение электромагнитных волн в средах с частотной (временной) дисперсией.	6	า-ก	подготовка к устному опросу	6	устный опрос
1111	Тема 10. Электромагнитные волны в анизотропных средах.	6	1 1111-14	подготовка к устному опросу	6	устный опрос
1	Тема 12. Самовоздействие ऽй9⊙вихеныные технол	6 огии, в і	16-17	подготовка к устному опросу интерактивные (устный опрос ения

Используного такие интерактивные формы обучения как обсуждение теоретических вопросов, проведение блиц-опросов, применение роли экспертов для студентов.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение. Волновые уравнения в различных средах.

Тема 2. Упругие волны в жидкостях, газах и твердых телах.

устный опрос, примерные вопросы:

Упругие волны в жидкостях, газах и твердых телах. Основные свойства. Дифракция на ультразвуке

Тема 3. Распространение волн в неоднородных средах.

Тема 4. Распространение волн в неоднородных средах.

контрольная точка, примерные вопросы:

Приближение геометрической оптики. Геометрическая оптика слоисто-неоднородных сред. Рефракция лучей в плоско-слоистой среде. Условия применимости приближения геометрической оптики. Свойства тропосферы и ионосферы. Распространение радиоволн в тропосфере и ионосфере. Численные решения уравнений геометрической оптики для двух мерно неоднородных сред.

устный опрос, примерные вопросы:

Распространение волн в неоднородных средах. Неоднородные среды.

Тема 5. Отражение и преломление плоских электромагнитных волн на границе раздела сред.

5.

Тема 6. Распространение электромагнитных волн в средах с частотной (временной) дисперсией.

устный опрос, примерные вопросы:

Распространение электромагнитных волн в средах с частотной (временной) дисперсией. Дисперсия волн. Дисперсные и бездисперсные моды. Уравнения электромагнитного поля в средах с частотной дисперсией. Нормальная и аномальная дисперсия волн. Фазовая групповая скорости волн.

Тема 7. Волны в периодических структурах.

Тема 8. Излучение электромагнитных волн.

Тема 9. Распространение звуковых волн.

Тема 10. Электромагнитные волны в анизотропных средах.

устный опрос, примерные вопросы:

Электромагнитные волны в анизотропных средах. Общие закономерности распространения электромагнитных волн в анизотропных средах. Распространение плоских высокочастотных волн в магнитоактивной плазме. Частные случаи распространения радиоволн в магнитоактивной плазме, продольное и поперечное распространение. Эффект Фарадея. Эффект Керра.

Тема 11. Волны в нелинейных средах.

Тема 12. Самовоздействие плоских волн.

устный опрос, примерные вопросы:

Приборы на основе поверхностных акустических волн.

Тема 13. Нелинейные явления в ионосфере при распространении мощных радиоволн.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Экзаменационные вопросы

по курсу "Физика волновых процессов"

- 1. Понятие воны. Одномерное волновое уравнение.
- 2. Фазовая скорость. Импеданс (волновое сопротивление) среды.
- 3. Отражение и прохождение волн.
- 4. Согласование импедансов двух сред. Стоячие волны.
- 5. Групповая скорость.
- 6. Вывод волнового уравнения идеальной линии передачи.
- 7. Вывод волнового уравнения для линии с потерями.
- 8. Связь волнового сопротивления линии передачи без потерь с ее параметрами.
- 9. Вывести выражение для затухания и волнового числа в линии с потерями.
- 10. Поучить выражение для амплитудных коэффициентов отражения и прохождения для токов и напряжений в линии передачи, нагруженной на сопротивление ZL.
- 11. Уравнения Максвелла.
- 12. Электромагнитные волны в среде без потерь.
- 13. Электромагнитные волны в среде с потерями (среда диэлектрик).
- 14. Электромагнитные волны в среде с потерями (среда проводник).
- 15. Критерий разделения сред на диэлектрики и проводники.
- 16. Отражение и преломление плоских электромагнитных волн на плоской границе раздела двух сред.
- 17. Отражение при горизонтальной падающей поляризации волны.
- 18. Отражение и преломление при вертикальной поляризации падающей волны.
- 19. Коэффициенты отражения для различных сред. Случай произвольной поляризации падающей электромагнитной волны.

- 20. Распространение радиоволн в неоднородных средах. Приближение геометрической оптики.
- 21. Геометрическая оптика слоисто-неоднородной среды.
- 22. Рефракция лучей в плоскослоистой среде. Условие применимости метода геометрической оптики.
- 23. Векторный и скалярный потенциалы.
- 24. Уравнения Даламбера. Калибровка Лоренца.
- 25. Решение уравнений Даламбера. Поле вокруг линейного провода.
- 26. Напряженность электрического поля и векторного потенциала элементарного вибратора.
- 27. Три зоны поля вибратора. Ближняя зона. Дальняя зона. Промежуточная зона.
- 28. Напряженность электрического поля в дальней зоне в свободном пространстве. Диаграмма направленности элементарного вибратора. Мощность, излучаемая вибратором. Сопротивление излучения вибратора.
- 29. Общий вид решения волновых уравнений в волноводах. Дисперсия в волноводах.
- 30. Типы волн в волноводах. Волны без дисперсии.
- 31. Прямоугольный волновод. ТЕ-мода. ТМ-мода.
- 32. Основная мода. Коаксиальный волновод.

7.1. Основная литература:

- 1. Горелик Г.С. Колебания и волны. Введение в акустику, радиофизику и оптику. [Электронный ресурс] М.:Физматлит, 2007 г., Издание 3-е, под ред. С.М. Рытова, 656 стр. ISBN: 978-5-9221-0776-1. Режим доступа: http://e.lanbook.com/view/book/2167/
- 2. Дубнищев Ю.Н. Колебания и волны. [Электронный ресурс] Учебное пособие. 2-е изд. перераб. СПб: Лань, 2011. 384 стр. Режим доступа: http://e.lanbook.com/view/book/683/
- 3. Насыров А.М. Волновые процессы, ч.1. Основные понятия, [Электронный ресурс] Учебно-методическое пособие, изд. КГУ,1995- 42с. Режим доступа: http://kpfu.ru/docs/F1418525667/wp1.pdf
- 4. Насыров А.М. Волновые процессы, ч.2. Электромагнитные волны диапазона радиочастот, [Электронный ресурс] Учебно-методическое пособие, изд. КГУ 1995, -39с. Режим доступа: http://kpfu.ru/docs/F691322566/wp2.pdf
- 5. Насыров А.М. Волновые процессы, ч.3. Распространение радиоволн в неоднородных и анизотропных средах. [Электронный ресурс] Учебно-методическая разработка.изд. КГУ. 1995,-49с. Режим доступа: http://kpfu.ru/docs/F859368769/wp3.pdf

7.2. Дополнительная литература:

- 1. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М: Наука, 1979.
- 2. Вайнштейн Л.А. Электромагнитные волны. М: Радио, 1988.
- 3. Черный Б.Ф. Распространение радиоволн. М: Советское радио, 1972.

7.3. Интернет-ресурсы:

Плоские электромагнитные волны -

Волновые процессы - http://mashdet.ru/labmehn/labmexan55.htm

ВОЛНОВЫЕ ПРОЦЕССЫ В МЕХАНИКЕ РАЗРУШЕНИЯ -

http://rusnauka.narod.ru/lib/phisic/destroy/glava7.htm

Кафедра радиоэлектроники КФУ. Электронные ресурсы. -

http://www.kpfu.ru/main_page?p_sub=8350

Распространение волн в диспергирующих средах -

https://www.google.ru/#newwindow=1&g=%D0%B2%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D1

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Физика волновых процессов" предполагает использование следующего материально-технического обеспечения:

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Перечень материально-технического обеспечения включает в себя:

- лабораторный практикум по вопросам Физики волновых процессов включает в себя следующие работы:
- 1. Эффект Фарадея
- 2.* Оптический переключатель в волноводном световоде на основе эффекта Керра
- 3.* Упругие волны в жидкостях. Дифракция света на ультрозвуковых волнах.
- 4. Исследование элементов волноводной техники
- 5. Определение добротности резонатора по КСНВ
- 6.* Фильтры сигналов на поверхностных акустических волнах.
- 7. Акустические волны

Примечание: Работы, отмеченные знаком (*), являются обязательными для выполнения студентами.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011800.62 "Радиофизика" и профилю подготовки Специальные радиотехнические системы .

Автор(ы):		
Насыров	И.А	
Насыров	A.M	
""	201 г.	
Рецензен	т(ы):	
Овчинник	ов М.Н	
" "	201 г.	