МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Биомеханика ФТД.Б.2

Направление подготовки: <u>011200.68 - Физика</u>
Профиль подготовки: Медицинская физика
Квалификация выпускника: магистр
Daniel of Waller and Company

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Храмченков М.Г. Рецензент(ы): Ильясов К.А.

СОГЛАСОВАНО:

COI MACOBAITO.	
Заведующий(ая) кафедрой: Галеев А. А. Протокол заседания кафедры No от ""	201 <u>_</u>
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от ""	201г
Регистрационный No 615714	
Казань	

2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Храмченков М.Г. Кафедра общей геологии и гидрогеологии Институт геологии и нефтегазовых технологий, Maxim.Khramchenkov@kpfu.ru

1. Цели освоения дисциплины

Цель курса - научить студентов моделировать и решать задачи биомеханики.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " ФТД.Б.2 Факультативы" основной образовательной программы 011200.68 Физика и относится к базовой (общепрофессиональной) части. Осваивается на 2 курсе, 3 семестр.

Дисциплина по выбору Б2.ДВ.3 "Введение в биомеханику" относится к циклу общепрофессиональных дисциплин, предназначена для студентов второго курса (4 семестр) и предполагает знание студентами основных понятий математического анализа и алгебры

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции					
ОК-1 (общекультурные компетенции)	способностью демонстрировать углубленные знания в области математики и естественных наук					
ПК-1 (профессиональные компетенции)	способностью свободно владеть фундаментальными разделами физики, необходимыми для решения научно-исследовательских задач (в соответствии со своей магистерской программой)					
ПК-3 (профессиональные компетенции)	способностью самостоятельно ставить конкретные задачи научных исследований в области физики (в соответствии с профилем магистерской программы) и решать их с помощью современной аппаратуры, оборудования, информационных технологий с использованием новейшего отечественного и зарубежного опыта					
ПК-5 (профессиональные компетенции)	способностью использовать свободное владение профессионально-профилированными знаниями в области информационных технологий, современных компьютерных сетей, программных продуктов и ресурсов Интернет для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки					
С-9рофессиональные исследованиямпетенции)						

В результате освоения дисциплины студент:

1. должен знать:

основные законы биомеханики и особенности моделирования процессов, протекающих в человеческом организме

2. должен уметь:

ориентироваться в основных понятиях биомеханики

3. должен владеть:

теоретическими знаниями о методах исследования объектов биомеханики

4. должен демонстрировать способность и готовность:

навыки математического моделирования задач биомеханики

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные занятия работы		Текущие формы контроля	
	Тема 1. структура и свойства биологических систем	3	1	2	4	0	дискуссия устный опрос
	Тема 2. механика электрической активности органов	3	2	2	4		контрольная работа
	Тема 3. механика мышечного сокращения	3	3	2	4	0	письменная работа
4.	Тема 4. механика дыхания	3	4	2	4	0	устный опрос
	Тема 5. механика кровообращения	3	5	2	4	0	контрольная работа
	Тема 6. модели регуляции в биосистемах	3	6	2	3	0	устный опрос
	Тема 7. механика экскреторной системы организма	3	7	2	3		контрольная работа
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			14	26	0	

4.2 Содержание дисциплины

Тема 1. структура и свойства биологических систем

лекционное занятие (2 часа(ов)):

основные компоненты биологических систем; биологические полимеры; вода и водные растворы; мембраны; механика мембранного массообмена

практическое занятие (4 часа(ов)):

Подвижность фосфолипидных молекул в мембранах. Физическое состояние и фазовые переходы липидов в мембранах. Пассивный и активный перенос веществ через мембрану. Ионные насосы. Липидные поры, стабильность и проницаемость мембран.

Тема 2. механика электрической активности органов

лекционное занятие (2 часа(ов)):

Механизмы и модели генерации потенциала действия. Потенциал покоя и потенциал действия в клетках; автоколебания и автоволны в органах и тканях; ревербератор в неоднородных средах

практическое занятие (4 часа(ов)):

колебания в живых системах; автоколебания и автоволны в органах и тканях; ревербератор в неоднородных средах

Тема 3. механика мышечного сокращения

лекционное занятие (2 часа(ов)):

Структура мышц. Модель скользящих нитей.

практическое занятие (4 часа(ов)):

Биомеханика мышцы, уравнение Хилла. Модель мышечного сокращения. Электромеханическое сопряжение в мышцах

Тема 4. механика дыхания

лекционное занятие (2 часа(ов)):

основные элементы пульмонологии; механика легкого; механика альвеол

практическое занятие (4 часа(ов)):

механика и задачи газового массообмена

Тема 5. механика кровообращения

лекционное занятие (2 часа(ов)):

Биомеханика системы кровообращения. Реологические свойства крови. Основные законы гемодинамики. Моделирование функций элементов сердечно-сосудистой системы

практическое занятие (4 часа(ов)):

Задача о движения крови в капиллярах. Особенности кровотока при локальном сужении сосуда

Тема 6. модели регуляции в биосистемах

лекционное занятие (2 часа(ов)):

Модели многокомпонентного массопереноса в задачах о передаче нервного импульса практическое занятие (3 часа(ов)):

Задачи диффузионного и электро-химического транспорта в живых системах

Тема 7. механика экскреторной системы организма

лекционное занятие (2 часа(ов)):

Механика моче-выделительной системы; фильтрационно-реабсорбционные процессы

практическое занятие (3 часа(ов)):

Задачи о фильтрации и массообмене в живых набухающих системах

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 1. структура и свойства биологических систем	3	1	подготовка к дискуссии	5	дискуссия
				подготовка к устному опросу	5	устный опрос
2.	Тема 2. механика электрической активности органов	3	2	подготовка к контрольной работе		контрольная работа
3.	Тема 3. механика мышечного сокращения	3		подготовка к письменной работе	1 7()	письменная работа
4.	Тема 4. механика дыхания	3	. 4	подготовка к устному опросу	10	устный опрос
5.	Тема 5. механика кровообращения	3	5	подготовка к контрольной работе		контрольная работа
6.	Тема 6. модели регуляции в биосистемах	3	n	подготовка к устному опросу	10	устный опрос
7.	Тема 7. механика экскреторной системы организма	3		подготовка к контрольной работе		контрольная работа
	Итого				68	

5. Образовательные технологии, включая интерактивные формы обучения

Активные и интерактивные формы занятий в сочетании с внеаудиторной работой

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. структура и свойства биологических систем

дискуссия, примерные вопросы:

обсуждение использования общих законов механики для описания процессов в живых системах

устный опрос, примерные вопросы:

устный опрос студентов на умение использования общих законов механики для описания процессов в живых системах в форме коллоквиума вопросы для контроля: 1. что такое активный и пассивный транспорт веществ через биологические мембраны; 2. что такое фли-флоп; 3. записать и объяснить уравнение Нернста-Планка; 4. записать и объяснить уравнение \уссинга-Тиорелла

Тема 2. механика электрической активности органов

контрольная работа, примерные вопросы:

контрольная работа на знание основных законов электрофизики применительно к живым системам Задания: рассчитать напряженность поля на мембране в состоянии покоя, если концентрация ионов кальция внутри клетки 125 ммоль/л, снаружи - 8 ммоль/л, а толщина мембраны - 8 нм; 2. Рассчитатйте амплитуду потенциала действия, если концентрация калия и натрия внутри клетки возбудимой ткани 125 ммоль/л и 1,5 ммоль/л соответственно, а снаружи - 2,5 ммоль/л и 125 ммоль/л

Тема 3. механика мышечного сокращения

письменная работа, примерные вопросы:

реферат на тему, связанную со спецификой процессов при сокращении мышц примерные темы для реферата: 1. реологические модели механики мышцы; 2. уравнение Хилла, мощность одиночного сокращения; 3. кинетические уравнения модели мышечного сокращения

Тема 4. механика дыхания

устный опрос, примерные вопросы:

устный опрос студентов на умение использования общих законов механики для описания процессов, протекающих в человеческих легких (мышечные сокращения, динамика вентиляции легкого, кровообращение) в форме коллоквиума Вопросы к коллоквиуму: 1. описать модель газообмена в альвеолах; 2. описать модель вентиляции легких; 3. описать модель механики вдоха и выдоха

Тема 5. механика кровообращения

контрольная работа, примерные вопросы:

контрольная работа на знание основных законов механики кровообращения задания: 1. радиус сосуда уменьшился вдвое, во сколько раз раз изменится объемная скорость кровотока при неизменном перепаде давления; 2. во сколько раз изменится скорость падения давления в начале диастолы, если гидравлическое сопротивление мелких сосудов увеличится на 20%; 3. оцените, какое время эритроцит находится в капилляре

Тема 6. модели регуляции в биосистемах

устный опрос, примерные вопросы:

устный опрос студентов на умение использования общих законов механики для описания процессов, протекающих в нейрогуморальной системах (динамика передачи сигналов, выделение активных веществ) в форме коллоквиума Вопросы: 1. в чем состоит принципиальное отличие автоволн в активных средах от механических волн в упругих средах; 2. почему автоволна распространяется в активной рреде без затухания

Тема 7. механика экскреторной системы организма

контрольная работа, примерные вопросы:

контрольная работа на знание основных законов механики работы выделительной системы задания: 1. оценить изменение фильтрационно-реабсорбционного равновесия при повышении капиллярного давления на 20%; 2. оценить изменение фильтрационно-реабсорбционного равновесия при понижении онкотичнского давления на 20%;

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Предусмотрена сдача зачета, примерные вопросы для зачета

- 1. что такое активный и пассивный транспорт веществ через биологические мембраны;
- 2. рассчитать напряженность поля на мембране в состоянии покоя, если концентрация ионов кальция внутри клетки 125 ммоль/л, снаружи 8 ммоль/л, а толщина мембраны 8 нм;
- 3. уравнение Хилла, мощность одиночного сокращения;
- 4. модель вентиляции легких;
- 5. кинетика кровоттока в эластичных сосудах; пульсовая волна; модель Франка
- 6. Автоволны в активных средах
- 7. Фильтрационно-реабсорбционное равновесие;
- 8. биомеханические функции элементов сердечно-сосудистой системы;
- 9. основные законы гемодинамики;
- 10. фильтрационно-реабсорбционные процессы в почках; механика процессов в капсуле Шумлянского-Боумена

7.1. Основная литература:

- 1.Основы прикладной антропологии и биомеханики: Учебное пособие / Л.П.Шершнева,
- Т.В.Пирязева, Л.В.Ларькина 2-е изд., перераб. и доп. М.: ИД ФОРУМ: ИНФРА-М, 2011. 160
- c. http://znanium.com/bookread.php?book=278943
- 2. Кроненберг В.Б. Лекции по спортивной биомеханике. Учебное пособие, 2011. М.: Советский спорт. - 206 с. http://e.lanbook.com/books/element.php?pl1 id=4095
- 3. Антонов В. Ф., Коржуев А. В. Физика и биофизика: краткий курс: учеб. пособие. М.: ГЭОТАР-Медиа, 2011. - 288 c. http://www.studmedlib.ru/ru/book/ISBN9785970420430.html

7.2. Дополнительная литература:

- 1. Плутахин Г. А., Кощаев А. Г. Биофизика. СПб.: Лань, 2012. 240 с. http://e.lanbook.com/books/element.php?pl1 id=4048
- 2. Анатомия, физиология и биомеханика зубочелюстной системы: учебник / Под ред. Л.Л. Колесникова, С.Д. Арутюнова, И.Ю. Лебеденко, В.П. Дегтярева. 2009. - 304 с. http://www.studmedlib.ru/ru/book/ISBN9785970411117.html

7.3. Интернет-ресурсы:

BioMechanica - http://dvgu.ru/meteo/book/BioMechan.htm BioMechanica - http://dvgu.ru/meteo/book/BioMechan.htm BioMechanica - http://dvgu.ru/meteo/book/BioMechan.htm BioMechanica - http://dvgu.ru/meteo/book/BioMechan.htm BioMechanica - http://dvgu.ru/meteo/book/BioMechan.htm

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Биомеханика" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя. включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен студентам. Электронная библиотечная система "Консультант студента" предоставляет полнотекстовый доступ к современной учебной литературе по основным дисциплинам, изучаемым в медицинских вузах (представлены издания как чисто медицинского профиля, так и по естественным, точным и общественным наукам). ЭБС предоставляет вузу наиболее полные комплекты необходимой литературы в соответствии с требованиями государственных образовательных стандартов с соблюдением авторских и смежных прав.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011200.68 "Физика" и магистерской программе Медицинская физика.

Автор(ы):			
Храмченк	ов М.Г		
""	201 _	_ г.	
Рецензен [.] Ильясов К	` '		
" "	201	Г.	