МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

V	ГРІ		V	ДΑ	\mathbf{L}
y	ΙОΙ	ᄄ	'木.	ЦΑ	NC.

Программа дисциплины

Физика гетерогенных и гранулированных систем М2.ДВ.1

Направление подготовки: <u>011200.68 - Физика</u> Профиль подготовки: <u>Физика сложных систем</u>
Квалификация выпускника: <u>магистр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
<u>Таюрский Д.А.</u>
Рецензент(ы):
<u>Нигматуллин Р.Р.</u>
СОГЛАСОВАНО:
Заведующий(ая) кафедрой:
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института физики:
Протокол заседания УМК No от "" 201г
Регистрационный No
Казань

2014

Э Л Е К Т Р О Н Н Ы Й
УНИВЕРСИТЕТ
ИНООТИДНОННО АНЛИТИЧЕСКАЯ СИСТЕМА КНУ

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) заместитель директора института физики Таюрский Д.А. Директорат Института физики Институт физики , Dmitry.Tayurskii@kpfu.ru

1. Цели освоения дисциплины

изучение современных методов исследования гетерогенных и гранулированных систем с точки зрения их приложений в нанотехнологиях и в науке о сложности

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.ДВ.1 Профессиональный" основной образовательной программы 011200.68 Физика и относится к дисциплинам по выбору. Осваивается на 2 курсе, 3 семестр.

Дисциплина входит в блок профессиональных дисциплин. Для ее успешного освоения необходимы знания курса статистической физики и квантовой механики

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-1 (общекультурные компетенции)	способностью демонстрировать углубленные знания в области математики и естественных наук
ОК-5 (общекультурные компетенции)	способностью порождать новые идеи (креативность)
ПК-1 (профессиональные компетенции)	способностью свободно владеть фундаментальными разделами физики, необходимыми для решения научно-исследовательских задач
ПК-7 (профессиональные компетенции)	способностью свободно владеть профессиональными знаниями для анализа и синтеза физической информации
ПК-9 (профессиональные компетенции)	способностью организовать и планировать физические исследования
ПК-10 (профессиональные компетенции)	способностью организовать работу коллектива для решения профессиональных задач
ПК-8 (профессиональные компетенции)	способностью проводить свою профессиональную деятельность с учетом социальных, этических и природоохранных аспектов

В результате освоения дисциплины студент:

1. должен знать:

физику гетерогенных и гранулированных систем

2. должен уметь:

пользоваться современными методами теоеретического описания свойств гетерогенных и гранулированных систем

3. должен владеть:

современными методами статистической физики

к применению полученных знаний для описания реальных физических систем

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Лекции			Текущие формы контроля
				Лекции	практические занятия	работы	
1.	Тема 1. Физика поверхностей жидкостей и твердых тел, поверхностные и межфазные явления гетерогенных системах.	3	1	2	1	0	
2.	Тема 2. Структура и свойства свободной поверхности твердых тел (поверхности раздела твердое тело - газ или пар):	3	2-4	2	2	0	
3.	Тема 3. Твердотельные гетероструктуры	3	5-7	2	2	0	
4.	Тема 4. Магнитные свойства многослойных плёнок.	3	8-9	2	2	0	
5.	Тема 5. Физические свойства гранулированных систем.	3	10-11	2	2	0	
6.	Тема 6. Термодинамика гранулированных систем.	3	12	2	2	0	

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	
7	Тема 7. Гранулированные структуры магнитных частиц	3	13	1	2	0	
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			13	13	0	

4.2 Содержание дисциплины

Тема 1. Физика поверхностей жидкостей и твердых тел, поверхностные и межфазные явления гетерогенных системах.

лекционное занятие (2 часа(ов)):

Физика поверхностей жидкостей и твердых тел, поверхностные и межфазные явления гетерогенных системах. Характеристики свободной поверхности жидкостей (поверхности раздела жидкость-пар или газ): поверхностная энергия и поверхностное натяжение, методы их оценки, кривизна поверхности и капиллярные силы, адсорбционные слои и поверхностно-активные вещества, электрические и электро-химические потенциалы, электронная структура и работа выхода электронов.

практическое занятие (1 часа(ов)):

кривизна поверхности и капиллярные силы

Тема 2. Структура и свойства свободной поверхности твердых тел (поверхности раздела твердое тело - газ или пар):

лекционное занятие (2 часа(ов)):

Структура и свойства свободной поверхности твердых тел (поверхности раздела твердое тело? газ или пар): поверхностная энергия и методы ее оценки, геометрическая и электронная структура, особенности электронной структуры поверхности металлов, полупроводников и диэлектриков, несовершенства и неоднородности поверхности, поверхностные группы и поверхностная подвижность, реакции на поверхности, эпитаксия, удельная поверхность и пористость, физическая и химическая адсорбция газов и паров, типы адсорбционных слоев, капиллярная конденсация, методы оценки структуры поверхности, величины удельной поверхности и пористости твердых тел. Поверхности раздела конденсированных фаз (межфазные поверхности).

практическое занятие (2 часа(ов)):

методы оценки структуры поверхности, величины удельной поверхности и пористости твердых тел

Тема 3. Твердотельные гетероструктуры

лекционное занятие (2 часа(ов)):

Твердотельные гетероструктуры Полупроводниковый гетеропереход. Размерное квантование и квантово-размерные структуры. Типы квантоворазмерных структур. Размерное квантование электронной подсистемы квантовых точек. Низкоразмерные магнитные системы. Особенности фундаментальных свойств магнетиков в тонкоплёночном состоянии. Спонтанная намагниченность тонких плёнок в теориях молеку-лярного поля и спиновых волн. Роль поверхности и размерного фактора в формировании магнитной анизотропии. Влияние толщины плёнок на структуру доменов и доменных границ.

практическое занятие (2 часа(ов)):

Спонтанная намагниченность тонких плёнок в теориях молеку-лярного поля и спиновых волн. Роль поверхности и размерного фактора в формировании магнитной анизотропии. Влияние толщины плёнок на структуру доменов и доменных границ.

Тема 4. Магнитные свойства многослойных плёнок.

лекционное занятие (2 часа(ов)):

Магнитные свойства многослойных плёнок. Влияние контактного обмен- ного взаимодействия на спонтанную намагниченность, динамические и гис- терезисные свойства. Косвенное обменное взаимодействие в плёнках с немагнитными прослойками. Переход металл-сверхпроводник. Гетероструктуры ?нормальный металл-сверхпроводник?. Магнитоэлектрические явления в многослойных плёнках. Гигантское маг- нитосопротивление в магнитных сверхрешётках и сэндвичах. Баллистиче- ское магнитосопротивление. Гигантский магнитный импеданс.

практическое занятие (2 часа(ов)):

Переход металл-сверхпроводник. Гетероструктуры "нормальный металл-сверхпроводник".

Тема 5. Физические свойства гранулированных систем.

лекционное занятие (2 часа(ов)):

Физические свойства гранулированных систем. Статистическая механика гранулированных систем, упаковка и роль трения. Движение системы гранул. Причины образования гранулированного структурного состояния. Нестабильности и формирование упорядоченных структур в вибрирующих гранулированных системах. Разделение по размерам. Самоорганизация.

практическое занятие (2 часа(ов)):

Нестабильности и формирование упорядоченных структур в вибрирующих гранулированных системах. Разделение по размерам. Самоорганизация.

Тема 6. Термодинамика гранулированных систем.

лекционное занятие (2 часа(ов)):

ермодинамика гранулированных систем. Макроскопическое усреднение. Компьтерное моделирование гранулярных систем. Моделирование структур методом Монте-Карло. Моделирование потоков методами молекулярной динамики.

практическое занятие (2 часа(ов)):

Моделирование структур методом Монте-Карло. Моделирование потоков методами молекулярной динамики.

Тема 7. Гранулированные структуры магнитных частиц *лекционное занятие (1 часа(ов)):*

Гранулированные структуры магнитных частиц Свойства изолированных магнитных частиц. Состояния однодоменности и абсолютной однодоменности. Суперпарамагнетизм. Особенности гистере- зисных свойств мелких частиц. Ансамбли частиц. Корреляционые эффекты. Перемагничивание цепочки сфер. Суперпарамагнетизм и гигантское магнитосопротивление в системе магнитных гранул. Гранулированные сверхпроводники. Их свойства и методы описания.

практическое занятие (2 часа(ов)):

Свойства изолированных магнитных частиц. Состояния однодоменности и абсолютной однодоменности.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

	N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	1.	Тема 1. Физика поверхностей жидкостей и твердых тел, поверхностные и межфазные явления гетерогенных					
L				·	·	·	

системах.

работа с 3 1 литературой 6 опрос решение задач

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Структура и свойства свободной поверхности твердых тел (поверхности раздела твердое тело - газ или пар):	3		работа с литературой решение задач	6	опрос
3.	Тема 3. Твердотельные гетероструктуры	3	5-7	работа с литературой решение задач	6	опрос
4.	Тема 4. Магнитные свойства многослойных плёнок.	3	8-9	работа с литературой решение задач	6	опрос
5.	Тема 5. Физические свойства гранулированных систем.	3	10-11	работа с литературой решение задач	6	опрос
6.	Тема 6. Термодинамика гранулированных систем.	3	1	работа с литературой решение задач	8	опрос
	Тема 7. Гранулированные структуры магнитных частиц	3		подготовка к зачету	6	зачет
7.				работа с литературой решение задач	2	опрос
	Итого				46	

5. Образовательные технологии, включая интерактивные формы обучения

Интернет-технологии, проектное обучени

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Физика поверхностей жидкостей и твердых тел, поверхностные и межфазные явления гетерогенных системах.

опрос, примерные вопросы:

Тема 2. Структура и свойства свободной поверхности твердых тел (поверхности раздела твердое тело - газ или пар):

опрос, примерные вопросы:

Тема 3. Твердотельные гетероструктуры

опрос, примерные вопросы:

Тема 4. Магнитные свойства многослойных плёнок.

опрос, примерные вопросы:

Тема 5. Физические свойства гранулированных систем.

опрос, примерные вопросы:

Тема 6. Термодинамика гранулированных систем.

опрос, примерные вопросы:

Тема 7. Гранулированные структуры магнитных частиц

зачет, примерные вопросы:

опрос, примерные вопросы:

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Список вопросов

7.1. Основная литература:

- 1. А.В. Федоров, Физика и технология гетероструктур, оптика квантовых наноструктур. Учебное пособие. СПб: СПбГУ ИТМО, 2009. 196 С.
- 2. А. Милнс, Д. Фойхт. Гетеропереходы и переходы металл-полупроводник. Мир. Москва. 1975.
- 3. М. Херман. Полупроводниковые сверхрешетки. Мир. Москва. 1989.
- 4. А.Я. Шик, Л.Г. Бакуева, С.Ф. Мусихин, С.А. Рыков. Физика низкоразмерных систем. Наука. СПб. 2001.
- 5. А.И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. Физматлит. Москва. 2005.
- 6. A. Mehta, Granular Physics, Cambridge University Press, 2007. 305 P.

7.2. Дополнительная литература:

Chandrasekhar, V. in Superconductivity: Vol. 1: Conventional and High Temperature Superconductors (eds Bennemann, K. H. & Ketterson, J. B.) 279-313 (Springer, 2008).

- 2. H. Zabel, S.D. Bader, Magnetic Heterostructures: Advances And Perspectives In Spinstructures And Spintransport (Springer Tracts In Modern Physics), Springer, 2007. 363 P.
- 3. Mitra Dutta, Michael A. Stroscio, Advanced Semiconductor Heterostructures, World Scientific Publishing Company, 2003. 1171 P.

7.3. Интернет-ресурсы:

Lecture notes on Surfaces and Thin Films - http://venables.asu.edu/grad/lectures.html Role of inelasticity in granular medium -

http://www.haverford.edu/physics-astro/Gollub/vib_granular/inelastic/inelastic.html

Surface Analysis - http://www.chembio.uoguelph.ca/educmat/chm729/tutorial.htm

Towards a Landau-Ginzburg-type Theory for Granular Fluids - http://arxiv.org/abs/cond-mat/0103086 Описание гранулрованныхсистем - http://www.scientific.ru/journal/physnews100301.html

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Физика гетерогенных и гранулированных систем" предполагает использование следующего материально-технического обеспечения:

Программа дисциплины "Физика гетерогенных и гранулированных систем"; 011200.68 Физика; заместитель директора института физики Таюрский Д.А.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011200.68 "Физика" и магистерской программе Физика сложных систем .

Программа дисциплины "Физика гетерогенных и гранулированных систем"; 011200.68 Физика; заместитель директора института физики Таюрский Д.А.

Авто	р(ы):
Таю	оский Д.А
""	201 г.
Рец	ензент(ы):
Ниг	атуллин Р.Р
""	201 г.