МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

УТВЕРЖДАЮ

Программа дисциплины

<u>Дополнительные главы математического анализа</u> Б2.В.7

Направление подготовки: <u>230400.62 - Информационные системы и технологии</u>								
Профиль подготовки: Информационные системы в образовании								
Квалификация выпускника: бакалавр								
Форма обучения: очное								
Язык обучения: русский								
Автор(ы):								
Хайруллина Л.Э.								
Рецензент(ы):								
-								
СОГЛАСОВАНО:								
Заведующий(ая) кафедрой: Галимянов А. Ф. Протокол заседания кафедры No от ""201г								
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:								
Протокол заседания УМК No от "" 201г								
Регистрационный No								
Казань								

2014

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ информационно аналитическая система кну

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Хайруллина Л.Э. Кафедра информационных систем отделение фундаментальной информатики и информационных технологий, Liliya. Hajrullina@kpfu.ru

1. Цели освоения дисциплины

Цель освоения дисциплины для обучающихся? научиться использовать углубленные знания математического и функционального анализа при изучении дисциплин профессионального цикла и через процесс активного продумывания материала при решении задач выработать правильные представления о связи абстрактных математических моделей с реальными процессами.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б2.В.7 Общепрофессиональный" основной образовательной программы 230400.62 Информационные системы и технологии и относится к вариативной части. Осваивается на 1 курсе, 2 семестр.

Дисциплина входит в вариативную часть общепрофессионального цикла образовательной программы бакалавра. Изучение данной дисциплины основывается на курсах "Математический анализ", "Алгебра и геометрия", "Физика".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-17 (профессиональные компетенции)	готовность проводить подготовку документации по менеджменту качества информационных технологий
ПК-2 (профессиональные компетенции)	способность проводить техническое проектирование
ПК-21 (профессиональные компетенции)	способность проводить оценку производственных и непроизводственных затрат на обеспечение качества объекта проектирования
ПК-3 (профессиональные компетенции)	способность проводить рабочее проектирование
ОК-1 (общекультурные компетенции)	владение культурой мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения, умение логически верно, аргументированно и ясно строить устную и письменную речь
ОК-10 (общекультурные компетенции)	готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования
ОК-12 (общекультурные компетенции)	владение основными методами защиты производственного персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-30 (профессиональные компетенции)	готовность проводить сборку информационной системы из готовых компонентов
ПК-33 (профессиональные компетенции)	готовность обеспечивать безопасность и целостность данных информационных систем и технологий
ПК-34 (профессиональные компетенции)	готовность адаптировать приложения к изменяющимся условиям функционирования
ПК-6 (профессиональные компетенции)	способность оценивать надежность и качество функционирования объекта проектирования

В результате освоения дисциплины студент:

1. должен знать:

- Основные положения теории пределов и непрерывности, теории дифференцирования, теории числовых и функциональных рядов, теории меры и интеграла;
- Основные теоремы дифференциального и интегрального исчисления функций одного и многих переменных, теории меры и абстрактного интеграла;

2. должен уметь:

- Решать основные задачи на вычисление пределов последовательностей и функций, дифференцирование и интегрирование функций, разложение функций в ряды.
- Определять возможности применения теоретических положений и методов математического анализа для постановки и решения конкретных прикладных задач, производить оценку качества полученных решений прикладных задач;

3. должен владеть:

- Навыками использования стандартных методов и моделей математического анализа и их применением к решению прикладных задач;
- Навыками пользования известными математическими пакетами прикладных программ и библиотеками прикладных функций для решения прикладных задач.
- 4. должен демонстрировать способность и готовность:
- Основные положения теории пределов и непрерывности, теории дифференцирования, теории числовых и функциональных рядов, теории меры и интеграла;
- Основные теоремы дифференциального и интегрального исчисления функций одного и многих переменных, теории меры и абстрактного интеграла;

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	Модуля		, , , , , , , , , , , , , , , , , , ,	Лекции	Практические занятия	лабораторные работы	
1.	Тема 1. Обыкновенные дифференциальные уравнения (ОДУ. Основные понятия. ОДУ I порядка)	2	1-2	2	0	2	
2.	Тема 2. ОДУ с разделяющимися переменными. Одно-родные ДУ I порядка	2	3-4	2	0	2	
3.	Тема 3. Линейные ДУ I порядка	2	5-6	2	0	2	
4.	Тема 4. ОДУ II порядка	2	7	2	0	2	
5.	Тема 5. Интегрирование функций нескольких переменных. Двойные, тройные и поверхностные интегралы	2	8	4	0	4	
6.	Тема 6. Скалярное и векторное поля	2	9	4	0	4	
7.	Тема 7. Собственные интегралы с параметрами. Непрерывность, дифференцируемость и интегрируемость по параметру.	2	10	2	0	2	
8.	Тема 8. Несобственные интегралы с параметрами. Равномерная сходимость. Непрерывность, дифференцируемость, интегрируемость по параметру.	2	11	2	0	2	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	-113			Лекции	Практические занятия	, Лабораторные работы	
9.	Тема 9. Эйлеровы функции	2	12	2	0	2	
10.	Тема 10. Функциональный ряд, степенной ряд, ряд Тейлора	2	13	2	0	2	
11.	Тема 11. Поточечная и равномерная сходимость функционального ряда	2	14	2	0	2	
12.	Тема 12. Тригонометрический ряд. Ряд Фурье.	2	15	4	0	4	
13.	Тема 13. Основные типы уравнений математической физики	2	16	2	0	2	
14.	Тема 14. Методы решения уравнения мат.физики	2	17-18	4	0	4	
	Тема . Итоговая форма контроля	2		0	0	0	экзамен
	Итого			36	0	36	

4.2 Содержание дисциплины

Тема 1. Обыкновенные дифференциальные уравнения (ОДУ. Основные понятия. ОДУ I порядка)

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 2. ОДУ с разделяющимися переменными. Одно-родные ДУ I порядка

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 3. Линейные ДУ I порядка

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 4. ОДУ II порядка

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 5. Интегрирование функций нескольких переменных. Двойные, тройные и поверхностные интегралы

лекционное занятие (4 часа(ов)):

лабораторная работа (4 часа(ов)):

Тема 6. Скалярное и векторное поля

лекционное занятие (4 часа(ов)):

лабораторная работа (4 часа(ов)):

Тема 7. Собственные интегралы с параметрами. Не- прерывность, дифференцируемость и интегрируемость по параметру.

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 8. Несобственные интегралы с параметрами. Равномерная сходимость.

Непрерывность, дифференцируемость, интегрируемость по параметру.

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 9. Эйлеровы функции

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 10. Функциональный ряд, степенной ряд, ряд Тейлора

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 11. Поточечная и равномерная сходимость функционального ряда

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 12. Тригонометрический ряд. Ряд Фурье.

лекционное занятие (4 часа(ов)):

лабораторная работа (4 часа(ов)):

Тема 13. Основные типы уравнений математической физики

лекционное занятие (2 часа(ов)):

лабораторная работа (2 часа(ов)):

Тема 14. Методы решения уравнения мат.физики

лекционное занятие (4 часа(ов)):

лабораторная работа (4 часа(ов)):

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1	Тема 1. Обыкновенные дифференциальные уравнения (ОДУ. Основные понятия. ОДУ I порядка)	2	1-2	Подготовка домашнего задания	2	Домашнее задание
2	Тема 2. ОДУ с разделяющимися переменными. Одно-родные ДУ I порядка	2	3-4	Подготовка домашнего задания	2	Домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
3.	Тема 3. Линейные ДУ I порядка	2	5-6	Подготовка домашнего задания	2	Домашнее задание
4.	Тема 4. ОДУ II порядка	2	7	Подготовка домашнего задания	2	Домашнее задание
5.	Тема 5. Интегрирование функций нескольких переменных. Двойные, тройные и поверхностные интегралы	2	8	Подготовка домашнего задания	4	Домашнее задание
6.	Тема 6. Скалярное и векторное поля	2	9	Подготовка домашнего задания	4	Домашнее задание
7.	Тема 7. Собственные интегралы с параметрами. Непрерывность, дифференцируемость и интегрируемость по параметру.	2	10	Подготовка домашнего задания	2	Домашнее задание
8.	Тема 8. Несобственные интегралы с параметрами. Равномерная сходимость. Непрерывность, дифференцируемость, интегрируемость по параметру.	2	11	Подготовка домашнего задания	2	Домашнее задание
9.	Тема 9. Эйлеровы функции	2	12	Подготовка домашнего задания	2	Домашнее задание
10.	Тема 10. Функциональный ряд, степенной ряд, ряд Тейлора	2	13	Подготовка домашнего задания	2	Домашнее задание
11.	Тема 11. Поточечная и равномерная сходимость функционального ряда	2	14	Подготовка домашнего задания	2	Домашнее задание
12.	Тема 12. Тригонометрический ряд. Ряд Фурье.	2	15	Подготовка домашнего задания	4	Домашнее задание
13.	Тема 13. Основные типы уравнений математической физики	2	16	Подготовка домашнего задания	2	Домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 14. Методы решения уравнения мат.физики	2	17-18	Подготовка к контрольной работе	. / .	Контрольная работа
	Итого				36	

5. Образовательные технологии, включая интерактивные формы обучения

В основе преподавания дисциплины лежит лекционно-семинарская система обучения, что позволяет студенту через процесс активного продумывания теоретического материала при решении задач выработать правильные представления о глубоких и абстрактных понятиях данного математического курса.

При изучении дисциплины применяется контекстное обучение, позволяющее студентам усваивать новые знания (вычисление криволинейных и поверхностных интегралов, вычисление длин дуг и площадей поверхностей, решение задач математического моделирования на языке функционального анализа, исследование вопросов разрешимости обыкновенных дифференциальных уравнений путем выявления связей с уже имеющимися знаниями (интегральное и дифференциальное исчисление функций многих переменных, теория числовых рядов, основные законы физики)).

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Обыкновенные дифференциальные уравнения (ОДУ. Основные понятия. ОДУ I порядка)

Домашнее задание, примерные вопросы:

ОДУ

Тема 2. ОДУ с разделяющимися переменными. Одно-родные ДУ I порядка

Домашнее задание, примерные вопросы:

ОДУ с разделяющимися переменными. Однородные ДУ І порядка

Тема 3. Линейные ДУ I порядка

Домашнее задание, примерные вопросы:

Линейные ДУ I порядка

Тема 4. ОДУ II порядка

Домашнее задание, примерные вопросы:

ОДУ II порядка

Тема 5. Интегрирование функций нескольких переменных. Двойные, тройные и поверхностные интегралы

Домашнее задание, примерные вопросы:

Интегрирование функций нескольких переменных. Двойные, тройные и поверхностные интегралы

Тема 6. Скалярное и векторное поля

Домашнее задание, примерные вопросы:

Скалярное и векторное поля

Тема 7. Собственные интегралы с параметрами. Не- прерывность, дифференцируемость и интегрируемость по параметру.

Домашнее задание, примерные вопросы:

Собственные интегралы с параметрами. Не- прерывность, дифференцируемость и интегрируемость по параметру

Тема 8. Несобственные интегралы с параметрами. Равномерная сходимость. Непрерывность, дифференцируемость, интегрируемость по параметру.

Домашнее задание, примерные вопросы:

Несобственные интегралы с параметрами. Равномерная сходимость. Непрерывность, дифференцируемость, интегрируемость по параметру.

Тема 9. Эйлеровы функции

Домашнее задание, примерные вопросы:

Эйлеровы функции

Тема 10. Функциональный ряд, степенной ряд, ряд Тейлора

Домашнее задание, примерные вопросы:

Функциональный ряд, степенной ряд, ряд Тейлора

Тема 11. Поточечная и равномерная сходимость функционального ряда

Домашнее задание, примерные вопросы:

Поточечная и равномерная сходимость функционального ряда

Тема 12. Тригонометрический ряд. Ряд Фурье.

Домашнее задание, примерные вопросы:

Тригонометрический ряд. Ряд Фурье.

Тема 13. Основные типы уравнений математической физики

Домашнее задание, примерные вопросы:

Основные типы уравнений математической физики

Тема 14. Методы решения уравнения мат.физики

Контрольная работа, примерные вопросы:

Контрольная работа

Тема . Итоговая форма контроля

Примерные вопросы к экзамену:

Вопросы к экзамену

- 1. Геометрический смысл определенного интеграла. Основные свойство определен-ного интеграла, формула Ньютона-Лейбница.
- 2. Замена переменной в определенном интеграле и интегрирование по частям.
- 3. Применение определенных интегралов. Площадь криволинейной трапеции. Объем тела вращения.
- 4. Длина дуги плоской кривой.
- 5. Несобственные интегралы с бесконечными пределами интегрирования.
- 6. Несобственные интегралы от неограниченных функций.
- 7. Функция двух переменных.
- 8. Частные производные и полный дифференциал функции нескольких переменных.
- 9. Касательная плоскость и нормаль. Геометрический смысл полного дифференциала функции двух переменных.
- 10. Приближенные вычисления с помощью полного дифференциала.
- 11. Частные производные высших порядков.
- 12. Необходимые и достаточные условия экстремума.
- 13. Производная по направлению.
- 14. Градиент. Связь градиента с производной по направлению.
- 15. Двойной интеграл. Основные свойства.
- 16. Приложения двойных интегралов.

- 17. Замена переменных в двойном интеграле. Двойной интеграл в полярных коорди-натах.
- 18. Тройной интеграл. Замена переменных в тройном интеграле.
- 19. Тройной интеграл в цилиндрической и сферической системе координат.
- 20. Криволинейные интегралы первого рода. Основные свойства. Физический и гео-метрический смысл.
- 21. Криволинейные интегралы второго рода. Свойства. Теорема существования.
- 22. Формула Грина.
- 23. Поверхностный интеграл первого рода.
- 24. Поверхностный интеграл второго рода
- 25. Числовые ряды. Признаки сходимости.
- 26. Функциональные ряды. Степенные ряды.
- 27. Ряды Тейлора и Маклорена. Применение степенных рядов.

7.1. Основная литература:

Лекции по математическому анализу. Ч. 2, , 2009г.

Сборник задач и упражнений по математическому анализу, Демидович, Борис Павлович, 2007г.

Основы математического анализа. [4.] 1, , 2006г.

Основы математического анализа. [Ч.] 2, , 2006г.

Теория функций комплексного переменного, Дубровин, Вячеслав Тимофеевич, 2010г.

- 1. Математический анализ: сборник задач с решениями: Учебное пособие / В.Г. Шершнев. М.: НИЦ ИНФРА-М, 2013. 164 с. URL: http://znanium.com/bookread.php?book=342088
- 2. Математический анализ: Учебное пособие / В.Г. Шершнев. М.: НИЦ ИНФРА-М, 2013. 288 с. URL: http://znanium.com/bookread.php?book=342089
- 3. Туганбаев А. А. Математический анализ: Пределы [Электронный ресурс] / А. А. Туганбаев. 2-е изд., стереот. М.: Флинта, 2011. 54 с. URL: http://znanium.com/bookread.php?book=409466

7.2. Дополнительная литература:

1. Злобина, С. В. Математический анализ в задачах и упражнениях [Электронный ресурс] / С. В. Злобина, Л. Н. Посицельская. - М. : ФИЗМАТЛИТ, 2009. - 360 с. http://znanium.com/catalog.php?bookinfo=405509

7.3. Интернет-ресурсы:

Введение в математический анализ - http://www.intuit.ru/department/mathematics/imathanalysis/ Конспект лекций по мат.анализу - http://www.ksu.ru/infres/sherstnev/k_5New.pdf Мат.анализ. Интегрирование - http://www.intuit.ru/department/mathematics/mathanint/

The probability of the control of th

Мат.анализ: Ряды - http://www.intuit.ru/department/mathematics/mathanalysis/

Примеры по курсу мат.анализа -

http://exponenta.ru/educat/class/courses/student/ma/examples.asp

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Дополнительные главы математического анализа" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "БиблиоРоссика", доступ к которой предоставлен студентам. В ЭБС "БиблиоРоссика "представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Компьютерный класс

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 230400.62 "Информационные системы и технологии" и профилю подготовки Информационные системы в образовании .

Программа дисциплины "Дополнительные главы математического анализа"; 230400.62 Информационные системы и технологии; доцент, к.н. Хайруллина Л.Э.

Автор(ы)			
Хайрулли	ıна Л.Э		
"_"	201 _	_ г.	
Рецензен	нт(ы):		
" "	201	Г.	