МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

Функциональный анализ М1.Б.3

Направление подготовки: 231300.68 - Прикладная математика
Профиль подготовки: Математическое моделирование
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>

Язык обучения: русский Автор(ы):

Павлова М.Ф. Рецензент(ы): Соловьев С.И.

\sim	СП	A (\sim	D	ΛL	\sim
CO	1 / 1	Αι	\mathcal{L}	D	AГ	10

COI JIACOBAHO:			
Заведующий(ая) кафедрой: Задворнов Протокол заседания кафедры No с		201г	
Учебно-методическая комиссия Инстит технологий: Протокол заседания УМК No от "_		гельной математики и инф 201г	ормационных
Регистрационный No 959314	Казань		

2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Павлова М.Ф. кафедра вычислительной математики отделение прикладной математики и информатики , Maria.Pavlova@kpfu.ru

1. Цели освоения дисциплины

Излагаются основные понятия и методы классического функционального анализа. Существенно используется материал общих курсов "Математический анализ", "Алгебра и геометрия".

Основная цель курса - сообщить материал, необходимый при изучении специальных курсов по дополнительным главам уравнений математической физики, в частности, по нелинейным уравнениям с частными производными и по численным методам решения уравнений математической физики.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " М1.Б.З Общенаучный" основной образовательной программы 231300.68 Прикладная математика и относится к базовой (общепрофессиональной) части. Осваивается на 1 курсе, 1 семестр.

Данная дисциплина относится к общепрофессиональным дисциплинам.

Читается на 1 курсе в 1 семестре для магистров обучающихся по направлению "Прикладная математика".

Изучение основывается на результатах изучения дисциплин "Алгебра и геометрия", "Математический анализ 1", "Математический анализ 2".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1 (профессиональные компетенции)	способность демонстрации общенаучных базовых знаний естественных наук, математики и информатики, понимание основных фактов, концепций, принципов теорий, связанных с прикладной математикой и информатикой
ПК-7 (профессиональные компетенции)	способность собирать, обрабатывать и интерпретировать данные со-временных научных исследований, необходимые для формирования выводов по соответствующим научным, профессиональным, социальным и этическим проблемам
ПК-9 (профессиональные компетенции)	способность решать задачи производственной и технологической деятельности на профессиональном уровне, включая: разработку алгоритмических и программных решений в области системного и прикладного программирования

В результате освоения дисциплины студент:

1. должен знать:

Студенты, завершившие изучение данной дисциплины должны быть знакомыми с теми разделами функционального анализа, которые традиционно используются при исследовании свойств дифференциальных уравнений с частными производными, при построении численных методов решения задач математической физики, и знакомство с которыми необходимо для математика-прикладника.

2. должен уметь:

практически решать примеры по функциональному анализу.

3. должен владеть:

курсами по нелинейным уравнениям с частными производными и по численным методам решения уравнений математической физики.

4. должен демонстрировать способность и готовность:

полное ознакомление с теорией и методами функционального анализа.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	Модуля		-	Лекции	Практические занятия	, Лабораторные работы	-
1.	Тема 1. Определение метрического пространства, примеры. Свойства сходящихся последовательностей. Неравенства Гельдера и Минковского.	1	1	0	0	1	письменная работа
2.	Тема 2. Замкнутые множества, свойства операции замыкания. Полные метрические пространства. Теоремы о полных метрических пространствах.	1	1	0	0	1	научный доклад
3.	Тема 3. Принцип сжатых отображений.	1	2	0	0	1	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах	аботы, ость)	Текущие формы контроля
	оду///			Лекции	Практические занятия	лабораторные работы	
4.	Тема 4. Сепарабельные пространства, примеры.	1	2	0	0	1	устный опрос
5.	Тема 5. Линейные пространства. Определение линейного пространства, свойства, примеры.	1	3	0	0		творческое задание
6.	Тема 6. Определение линейного нормированного пространства, примеры. Линейные многообразия. Теорема об изоморфизме конечномерных нормированных пространств. Лемма Рисса. Фактор-пространство.	1	3	0	0	1	реферат
7.	Тема 7. Гильбертово пространство. Определение гильбертова пространства, свойства скалярного произведения, примеры. Теорема об ортогональном разложении. Критерий всюду плотности множества в гильбертовом пространстве.	1	4	0	0	1	реферат
8.	Тема 8. Ортонормированные системы, ряды Фурье, неравенство Бесселя, замкнутые и полные системы.	1	5	0	0		научный доклад
9.	Тема 9. Изоморфизм сепарабельных гильбертовых пространств.	1	6	0	0		научный доклад

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	9_ J/			Лекции	Практические занятия	Лабораторные работы	
	Тема 10. Определение линейного оператора, примеры, основные свойства. Ограниченные линейные операторы, связь между непрерывностью и ограниченностью.	1	7	0	0	2	письменная работа
	Тема 11. Норма оператора. Теорема о продолжении линейного оператора.	1	8	0	0	2	письменная работа
	Тема 12. Равномерная и поточечная сходимости операторов. Теорема о полноте пространства линейных операторов в смысле равномерной сходимости. Теорема Банаха-Штейнхауза, полнота пространства линейных операторов в смысле поточечной сходимости. Необходимое и достаточное условие поточечной сходимости операторов.	1	9	0	0	2	творческое задание
13.	Тема 13. Теоремы об обратном операторе. График оператора, примеры замкнутых неограниченных операторов. Теорема Банаха о замкнутом графике. Спектр оператора.	1	10	0	0	2	реферат
14.	Тема 14. Теорема Хана-Банаха, следствия.	1	11	0	0	2	реферат
15.	Тема 15. Общий вид линейных функционалов в конкретных пространствах.	1	11	0	0	2	письменная работа

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	шодуля			Лекции	Практические занятия	лабораторные работы	
16.	Тема 16. Рефлексивные пространства, сопряженные операторы, примеры.	1	12	0	0	2	письменная работа
17.	Тема 17. Слабая сходимость в нормированных пространствах.	1	12	0	0	1	творческое задание
18.	Тема 18. Теорема Кантора. Теорема об экстремальных значениях непрерывных функционалов на компактных множествах.	1	13	0	0	1	реферат
19.	Тема 19. Теорема Хаусдорфа, следствие.	1	13	0	0	1	устный опрос
1/11	Тема 20. Критерий компактности в конкретных пространствах: теорема Арцела; теорема М.Рисса.	1	14	0	0	1	реферат
21.	Тема 21. Конечномерность и компактность. Слабая компактность, теорема о слабой компактности ограниченных множеств.		14,15	0	0	1	научный доклад
22.	Тема 22. Свойства вполне непрерывных операторов. Теорема о равномерном пределе вполне непрерывных операторов.	1	15,16	0	0	1	устный опрос
23.	Тема 23. Уравнения с вполне непрерывными операторами. Теоремы Фредгольма.	1	16	0	0	1	научный доклад
·	Тема . Итоговая форма контроля	1		0	0	0	экзамен
	Итого			0	0	32	

4.2 Содержание дисциплины

Тема 1. Определение метрического пространства, примеры. Свойства сходящихся последовательностей. Неравенства Гельдера и Минковского.

лабораторная работа (1 часа(ов)):

На занятии дается определение метрического пространства, приводятся примеры метрических пространств. Обсуждаются свойства сходящихся последовательностей.

Тема 2. Замкнутые множества, свойства операции замыкания. Полные метрические пространства. Теоремы о полных метрических пространствах.

лабораторная работа (1 часа(ов)):

На занятии рассматриваются следующие вопросы: полнота метрического пространства, основные свойства полных метрических пространствах.

Тема 3. Принцип сжатых отображений.

лабораторная работа (1 часа(ов)):

На занятии доказывается теорема "Принцип сжатых отображений". Приводятся примеры ее использования.

Тема 4. Сепарабельные пространства, примеры.

лабораторная работа (1 часа(ов)):

На занятии дается определение сепарабельного пространства, приводятся примеры сепарабельных пространств, обсуждается значимость этого свойства при решении практических задач.

Тема 5. Линейные пространства. Определение линейного пространства, свойства, примеры.

лабораторная работа (1 часа(ов)):

На занятии дается определение линейного пространства, обсуждаются свойства линейного пространства, приводятся примеры наиболее важных с точки зрения приложений линейных пространств.

Тема 6. Определение линейного нормированного пространства, примеры. Линейные многообразия. Теорема об изоморфизме конечномерных нормированных пространств. Лемма Рисса. Фактор-пространство.

лабораторная работа (1 часа(ов)):

На занятии дается определение линейного нормированного пространства, приводятся примеры наиболее важных с точки зрения приложений линейных нормированных пространств. Доказываются теорема об изоморфизме конечномерных нормированных пространств и лемма Рисса.

Тема 7. Гильбертово пространство. Определение гильбертова пространства, свойства скалярного произведения, примеры. Теорема об ортогональном разложении. Критерий всюду плотности множества в гильбертовом пространстве.

лабораторная работа (1 часа(ов)):

Дается определение гильбертова пространства, обсуждаются свойства скалярного произведения, примеры наиболее часто используемых гильбертовых пространств. Доказывается критерий всюду плотности множества в гильбертовом пространстве.

Тема 8. Ортонормированные системы, ряды Фурье, неравенство Бесселя, замкнутые и полные системы.

лабораторная работа (2 часа(ов)):

Дается определение ортонормированных систем, обсуждается важность этого понятия. Для рядов Фурье, построенным по ортонормированным системам, доказывается неравенство Бесселя.

Тема 9. Изоморфизм сепарабельных гильбертовых пространств.

лабораторная работа (2 часа(ов)):

На занятии доказывается теорема об изоморфизме сепарабельных гильбертовых пространств.

Тема 10. Определение линейного оператора, примеры, основные свойства. Ограниченные линейные операторы, связь между непрерывностью и ограниченностью.

лабораторная работа (2 часа(ов)):

Дается определение линейного оператора, приводятся примеры, обсуждаются основные свойства. Доказывается теорема о связи между непрерывностью и ограниченностью линейного оператора.

Тема 11. Норма оператора. Теорема о продолжении линейного оператора. *лабораторная работа (2 часа(ов)):*

Для ограниченных линейных операторов вводится понятие нормы, обсуждаются свойства нормы. Выводится формула для вычисления нормы оператора. Доказывается теорема о продолжении линейного оператора, заданного на линейном многообразии линейного нормированного пространства, на все пространство. 0,2 зачетные единицы.

Тема 12. Равномерная и поточечная сходимости операторов. Теорема о полноте пространства линейных операторов в смысле равномерной сходимости. Теорема Банаха-Штейнхауза, полнота пространства линейных операторов в смысле поточечной сходимости. Необходимое и достаточное условие поточечной сходимости операторов. лабораторная работа (2 часа(ов)):

Дается определение равномерной и поточечной сходимости операторов. Доказываются важные с точки зрения приложений результаты: теорема о полноте пространства линейных операторов в смысле равномерной сходимости, теорема Банаха-Штейнхауза, теорема о полноте пространства линейных операторов в смысле поточечной сходимости. Приводится необходимое и достаточное условие поточечной сходимости операторов.

Тема 13. Теоремы об обратном операторе. График оператора, примеры замкнутых неограниченных операторов. Теорема Банаха о замкнутом графике. Спектр оператора. *пабораторная работа (2 часа(ов)):*

На занятии доказываются теоремы об обратном операторе. Приводятся примеры замкнутых неограниченных операторов. Вводится понятие спектра оператора.

Тема 14. Теорема Хана-Банаха, следствия.

лабораторная работа (2 часа(ов)):

На занятии доказывается теорема Хана-Банаха, обсуждаются следствия из этой теоремы.

Тема 15. Общий вид линейных функционалов в конкретных пространствах. лабораторная работа (2 часа(ов)):

На занятии доказывается теорема Рисса о представлении линейного функционала в гильбертовом пространстве. Обсуждается применение этой теоремы в конкретных пространствах.

Тема 16. Рефлексивные пространства, сопряженные операторы, примеры. *пабораторная работа (2 часа(ов)):*

Вводятся понятия сопряженного пространства и рефлексивного пространства, рассматриваются примеры рефлексивных пространств. Дается определение сопряженного оператора, изучаются их свойства.

Тема 17. Слабая сходимость в нормированных пространствах.

лабораторная работа (1 часа(ов)):

Дается определение слабой сходимости в нормированном пространстве, формулируются и доказываются свойства слабо сходящихся последовательностей.

Тема 18. Теорема Кантора. Теорема об экстремальных значениях непрерывных функционалов на компактных множествах.

лабораторная работа (1 часа(ов)):

Вводятся определения относительно компактных и компактных множеств. Для последовательности компактных множеств доказывается теорема Кантора. Обсуждаются свойства полунепрерывности сверху (снизу) функционалов, рассматриваются примеры функционалов, обладающих этими свойствами.

Тема 19. Теорема Хаусдорфа, следствие.

лабораторная работа (1 часа(ов)):

Тема занятия: "Критерий компактности множеств в метрических пространствах". Доказываются теорема Хаусдорфа и следствия из этой теоремы.

Тема 20. Критерий компактности в конкретных пространствах: теорема Арцела; теорема М.Рисса.

лабораторная работа (1 часа(ов)):

Рассматриваются и обосновываются критерии компактности в пространстве непрерывных функций и в пространстве интегрируемых по Лебегу функций.

Тема 21. Конечномерность и компактность. Слабая компактность, теорема о слабой компактности ограниченных множеств.

лабораторная работа (1 часа(ов)):

Изучаются свойства компактных множеств, в частности, связь между конечномерностью и компактностью множеств.

Тема 22. Свойства вполне непрерывных операторов. Теорема о равномерном пределе вполне непрерывных операторов.

лабораторная работа (1 часа(ов)):

Дается определение вполне непрерывного оператора, проводится сравнения свойств непрерывности и вполне непрерывности оператора. Доказывается теорема о равномерном пределе вполне непрерывных операторов.

Тема 23. Уравнения с вполне непрерывными операторами. Теоремы Фредгольма. *пабораторная работа (1 часа(ов)):*

Исследуются вопросы существования и единственности решения уравнения с вполне непрерывным операторам. Формулируется альтернатива Фредгольма.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Определение метрического пространства, примеры. Свойства сходящихся последовательностей. Неравенства Гельдера и Минковского.	1		подготовка к письменной работе	'	письменная работа
2.	Тема 2. Замкнутые множества, свойства операции замыкания. Полные метрические пространства. Теоремы о полных метрических пространствах.	1		подготовка к научному докладу	2	научный доклад
5.	Тема 5. Линейные пространства. Определение линейного пространства, свойства, примеры.	1	3	подготовка к творческому заданию	2	творческое задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
6.	Тема 6. Определение линейного нормированного пространства, примеры. Линейные многообразия. Теорема об изоморфизме конечномерных нормированных пространств. Лемма Рисса. Фактор-пространство.	1	3	подготовка к реферату	2	реферат
7.	Тема 7. Гильбертово пространство. Определение гильбертова пространства, свойства скалярного произведения, примеры. Теорема об ортогональном разложении. Критерий всюду плотности множества в гильбертовом пространстве.	1	4	подготовка к реферату	2	реферат
8.	Тема 8. Ортонормированные системы, ряды Фурье, неравенство Бесселя, замкнутые и полные системы.	1	_	подготовка к научному докладу	2	научный доклад
10.	Тема 10. Определение линейного оператора, примеры, основные свойства. Ограниченные линейные операторы, связь между непрерывностью и ограниченностью.	1		подготовка к письменной работе	2	письменная работа
11.	Тема 11. Норма оператора. Теорема о продолжении линейного оператора.	1		подготовка к письменной работе	2	письменная работа

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
12.	Тема 12. Равномерная и поточечная сходимости операторов. Теорема о полноте пространства линейных операторов в смысле равномерной сходимости. Теорема Банаха-Штейнхауза, полнота пространства линейных операторов в смысле поточечной сходимости. Необходимое и достаточное условие поточечной сходимости операторов.	1	9	подготовка к творческому заданию	2	творческое задание
	Тема 13. Теоремы об обратном операторе. График оператора, примеры замкнутых неограниченных операторов. Теорема Банаха о замкнутом графике. Спектр оператора.	1	10	подготовка к реферату	3	реферат
14.	Тема 14. Теорема Хана-Банаха, следствия.	1	11	подготовка к реферату	3	реферат
	Тема 15. Общий вид линейных функционалов в конкретных пространствах.	1	11	подготовка к письменной работе	2	письменная работа
	Тема 16. Рефлексивные пространства, сопряженные операторы, примеры.	1	12	подготовка к письменной работе	2	письменная работа
	Тема 17. Слабая сходимость в нормированных пространствах.	1	12	подготовка к творческому заданию	2	творческое задание
18.	Тема 18. Теорема Кантора. Теорема об экстремальных значениях непрерывных функционалов на компактных множествах.	1	13	подготовка к реферату	3	реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
20.	Тема 20. Критерий компактности в конкретных пространствах: теорема Арцела; теорема М.Рисса.	1	14	подготовка к реферату	3	реферат
	Тема 21. Конечномерность и компактность. Слабая компактность, теорема о слабой компактности ограниченных множеств.	1	14,15	подготовка к научному докладу	2	научный доклад
23.	Тема 23. Уравнения с вполне непрерывными операторами. Теоремы Фредгольма.	1	16	подготовка к научному докладу	2	научный доклад
	Итого				40	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных и лабораторных занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. Причем конспект лекций, который остается у студента в результате прослушивания лекции не может заменить учебник. Его цель - формулировка основных утверждений и определений. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебнике. Список литературы разделен на две категории: необходимый для сдачи экзамена минимум и дополнительная литература.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для более глубокого понимания разделов дисциплины, а также развитие абстрактного мышления и способности самостоятельно доказывать частные утверждения.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы.

Кроме того, самостоятельная работа включает подготовку к экзамену. При подготовке к сдаче экзамена весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к экзамену, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда всегда будет резерв времени.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Определение метрического пространства, примеры. Свойства сходящихся последовательностей. Неравенства Гельдера и Минковского.

письменная работа, примерные вопросы:

На самостоятельную работу выносится тема: "Неравенства Гельдера и Минковского". Цель - подготовка к письменной работе. Варианты заданий письменной работы: "Неравенство Юнга", "Неравенство Гельдера ", "Неравенство Минковского".

Тема 2. Замкнутые множества, свойства операции замыкания. Полные метрические пространства. Теоремы о полных метрических пространствах.

научный доклад, примерные вопросы:

На самостоятельную работу выносится тема: "Замкнутые множества, свойства операции замыкания". Задание на дом: подготовить на тему "Замкнутые множества, свойства операции замыкания" научный доклад.

Тема 3. Принцип сжатых отображений.

Тема 4. Сепарабельные пространства, примеры.

Тема 5. Линейные пространства. Определение линейного пространства, свойства, примеры.

творческое задание, примерные вопросы:

Тема творческого доклада: "Аксиома коммутативности сложения в линейном пространстве есть следствие других аксиом". При выполнении этого задания предполагается, что студенты знакомы с определением линейного пространства и следствиями его аксиом.

Тема 6. Определение линейного нормированного пространства, примеры. Линейные многообразия. Теорема об изоморфизме конечномерных нормированных пространств. Лемма Рисса. Фактор-пространство.

реферат, примерные темы:

На самостоятельную работу выносится тема: "Линейные многообразия и фактор-пространство". Для реферата предлагаются следующие темы: "Линейные многообразия и их свойства", "Прямые суммы, примеры", "Фактор-пространство, свойства".

Тема 7. Гильбертово пространство. Определение гильбертова пространства, свойства скалярного произведения, примеры. Теорема об ортогональном разложении. Критерий всюду плотности множества в гильбертовом пространстве.

реферат, примерные темы:

На самостоятельную работу выносится тема: "Теорема об ортогональном разложении". Цель работы - подготовка реферата на заданную тему, в котором требуется отразить важность этого результата, привести его подробное доказательство.

Тема 8. Ортонормированные системы, ряды Фурье, неравенство Бесселя, замкнутые и полные системы.

научный доклад, примерные вопросы:

На самостоятельную работу выносится тема: "Замкнутые и полные системы". Цель работы - подготовка доклада на тему: "О роли замкнутых и полных систем в полном гильбертовом пространстве, об эквивалентности этих понятий".

Тема 9. Изоморфизм сепарабельных гильбертовых пространств.

Тема 10. Определение линейного оператора, примеры, основные свойства. Ограниченные линейные операторы, связь между непрерывностью и ограниченностью.

письменная работа, примерные вопросы:

Самостоятельная работа - подготовка к письменной работе на тему: "Ограниченные линейные операторы ". При выполнении письменной работы требуется для конкретных операторов доказать их линейность и ограниченность.

Тема 11. Норма оператора. Теорема о продолжении линейного оператора.

письменная работа, примерные вопросы:

По теме "Норма оператора" предполагается проведение письменной работы, при выполнении которой студент должен продемонстрировать умение определять норму операторов конкретного вида, в частности, интегральных операторов, операторов в евклидовом пространстве.

Тема 12. Равномерная и поточечная сходимости операторов. Теорема о полноте пространства линейных операторов в смысле равномерной сходимости. Теорема Банаха-Штейнхауза, полнота пространства линейных операторов в смысле поточечной сходимости. Необходимое и достаточное условие поточечной сходимости операторов.

творческое задание, примерные вопросы:

Самостоятельная работа по теме: "Равномерная и поточечная сходимости операторов." Студенту предлагается ответить на следующий вопрос: "Какова связь между равномерной и поточечной сходимостями операторов, привести примеры, когда имеет место одна из этих сходимостей в отсутствие другой".

Тема 13. Теоремы об обратном операторе. График оператора, примеры замкнутых неограниченных операторов. Теорема Банаха о замкнутом графике. Спектр оператора.

реферат, примерные темы:

На самостоятельную работу выносится тема "График оператора". Для реферата предлагаются следующие темы: "График оператора, свойства, примеры", "Примеры замкнутых неограниченных операторов", "Теорема Банаха о замкнутом графике".

Тема 14. Теорема Хана-Банаха, следствия.

реферат, примерные темы:

На самостоятельную работу выносится тема "Следствия теоремы Хана-Банаха". Для реферата предлагаются следующие темы: "Первое следствие теоремы Хана-Банаха, следствия из этого результата", "Второе следствия теоремы Хана-Банаха, следствие из этого результата".

Тема 15. Общий вид линейных функционалов в конкретных пространствах.

письменная работа, примерные вопросы:

По теме "Общий вид линейных функционалов в конкретных пространствах" предполагается проведение письменной работы, при выполнении которой студент должен продемонстрировать знания о представлении функционалов в евклидовом, гильбертовом пространствах, в пространствах функций интегрируемых по Лебегу с некоторой степенью.

Тема 16. Рефлексивные пространства, сопряженные операторы, примеры.

письменная работа, примерные вопросы:

Предполагается проведение письменной работы по теме "Сопряженные операторы", при выполнении которой студент должен продемонстрировать умение находить сопряженные операторы для операторов конкретного вида, в частности, интегральных операторов, операторов в гильбертовом пространстве.

Тема 17. Слабая сходимость в нормированных пространствах.

творческое задание, примерные вопросы:

Самостоятельная работа по теме: "Свойства слабо сходящихся последовательностей в нормированном пространстве". Студентам предлагается после изучения этой темы доказать, что в полном нормированном пространстве выпуклое множество слабо замкнуто.

Тема 18. Теорема Кантора. Теорема об экстремальных значениях непрерывных функционалов на компактных множествах.

реферат, примерные темы:

На самостоятельную работу выносится тема "Теорема об экстремальных значениях непрерывных функционалов на компактных множествах". Для реферата предлагаются следующие темы: "Теорема об экстремальных значениях снизу полунепрерывных снизу функционалов на компактных множествах", " Теорема об экстремальных значениях сверху полунепрерывных сверху функционалов на компактных множествах".

Тема 19. Теорема Хаусдорфа, следствие.

Тема 20. Критерий компактности в конкретных пространствах: теорема Арцела; теорема М.Рисса.

реферат, примерные темы:

На самостоятельную работу выносятся темы "Теорема Арцела", "Теорема Рисса". Реферат должен содержать формулировку и доказательство одной из этих теорем.

Тема 21. Конечномерность и компактность. Слабая компактность, теорема о слабой компактности ограниченных множеств.

научный доклад, примерные вопросы:

На самостоятельную работу выносится тема: "Слабая компактность". Цель работы - подготовка доклада на тему: "Теорема о слабой компактности ограниченных множеств в банаховых пространствах ".

Тема 22. Свойства вполне непрерывных операторов. Теорема о равномерном пределе вполне непрерывных операторов.

Тема 23. Уравнения с вполне непрерывными операторами. Теоремы Фредгольма.

научный доклад, примерные вопросы:

На самостоятельную работу выносится тема: "Теоремы Фредгольма для уравнений с вполне непрерывными операторами". Цель работы - подготовка докладов на темы: "Первая теорема Фредгольма, следствия", "Вторая теорема Фредгольма," "Третья теорема Фредгольма," "Четвертая теорема Фредгольма".

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

По данной дисциплине предусмотрено проведение экзамена.

Билеты для экзамена

по специальному курсу

"Функциональный анализ"

Билет �1

- 1. Теоремы о вложенных шарах в полном метрическом пространстве.
- 2. График оператора, примеры замкнутых неограниченных операторов.

Билет ♦2

- 1. Принцип сжатых отображений.
- 2. Лемма о ядре оператора, где вполне непрерывный оператор.

Билет �3

- 1. Теорема об ортогональном разложении.
- 2. Лемма о множестве значений оператора, где вполне непрерывный оператор.

Билет �4

- 1. Теорема о продолжении линейного оператора.
- 2. Конечномерность и компактность.

Билет �5

- 1. Теорема Банаха-Штейнхауза.
- 2. Замкнутые множества. Свойства операции замыкания.

Билет �6

- 1. Обратный оператор, теоремы об обратном операторе.
- 2. Полное метрическое пространство, пример неполного метрического пространства.

Билет �7

- 1. Теорема Хана-Банаха.
- 2. Лемма Рисса.

Билет �8

- 1. Основные теоремы о слабо сходящихся последовательностях.
- 2. Неравенства Гельдера и Минковского.

Билет �9

- 1. Теорема Хаусдорфа.
- 2. Рефлексивные пространства, примеры.

Билет �10

- 1. Теорема Арцелла.
- 2. Следствия теоремы Хана-Банаха.

Билет �11

- 1. Слабая компактность, теорема о слабой компактности ограниченных множеств в .
- 2. Норма оператора.

Билет �12

- 1. Теорема Банаха об обратном операторе.
- 2. Теорема о равномерном пределе последовательности вполне непрерывных операторов.

Билет ♦13

- 1. Первая теорема Фредгольма.
- 2. Общий вид линейного функционала в гильбертовом пространстве.

Билет �14

- 1. Вторая теорема Фредгольма.
- 2. Ограниченные линейные операторы, связь между ограниченностью и непрерывностью.

Билет ♦15

- 1. Теорема Банаха о замкнутом графике.
- 2. Ортонормированные системы, ряды Фурье, неравенство Бесселя, замкнутые и полные системы.

Билет �16

- 1. Теорема о представлении полного пространства с помощью множеств.
- 2. Компактные множества, определение, теорема Кантора.

Билет �17

- 1. Теорема о непредставимости полного пространства в виде суммы счетного числа нигде не плотных множеств.
- 2. Спектр оператора.

Билет �18

- 1. Теорема М. Рисса.
- 2. Теорема об изоморфизме конечномерных нормированных пространств.

7.1. Основная литература:

- 1.Сидоров, Анатолий Михайлович. Функциональный анализ: [учебное пособие] / А. М. Сидоров.?Казань: Казанский университет, 2010.?139 с.; 21.?Библиогр.: с. 4 (4 назв.).?ISBN 978-5-98180-834-0((в пер.)), 130.
- 2.Наймарк, Марк Аронович. Линейные дифференциальные операторы / М. А. Наймарк.?Изд. 3-е.?Москва: Физматлит, 2010.?526 с.: ил.; 22.?(Классика и современность).?Указ..?Библиогр.: с. 499-519.?ISBN 978-5-9221-1259-8((в пер.)), 400 .?

- 3. Задачи по теории функций и функциональному анализу с решениями: Учебное пособие / Т.А. Леонтьева, А.В. Домрина. М.: НИЦ Инфра-М, 2013. 164 с.: 70х100 1/16. (Высшее образование: Магистратура). (обложка) ISBN 978-5-16-006429-1, 1000 экз. http://www.znanium.com/catalog.php?bookinfo=377270
- 4. Краткий курс функционального анализа: Учебное пособие. / Люстерник Л.А., Соболев В.И. 2-е изд., стер. Спбю: Издательство "Лань", 2009. 272 с. ISBN 978-5-8114-0976-1 http://e.lanbook.com/view/book/245/
- 5.Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. 7-е изд. М.: Физматлит, 2009. 572 с.

http://e.lanbook.com/books/element.php?pl1_id=2206

7.2. Дополнительная литература:

- 1.Антоневич А. Б.: Задачи и упражнения по функциональному анализу: учебное пособие для студентов мат. спец. вузов / А. Б. Антоневич, П. Н. Князев, Я. В. Радыно; Под ред. С. Г. Крейна.?Издание 3-е, стереотипное.?Москва: URSS: [КомКнига], [2006].?208 с.; 22 см..?Библиогр.: с. 188-189.?Указ.: с. 190-204.?ISBN 5-484-00285-0.
- 2. Луговая, Г. Д. Функциональный анализ: Специальные курсы: учебное пособие / Г. Д. Луговая, А. Н. Шерстнев.?Москва: URSS: Издательство ЛКИ, 2008 .?256 с.
- 3. Лебедев, В. И. Функциональный анализ и вычислительная математика: [учебное пособие] / В. И. Лебедев.?Изд. 4-е, испр. и доп..?Москва: Физматлит, 2005.?295 с.

7.3. Интернет-ресурсы:

Задачи по теории функций и функциональному анализу с решениями: Учебное пособие / Т.А. Леонтьева, А.В. Домрина. - М.: НИЦ Инфра-М, 2013. - 164 с. - http://www.znanium.com/catalog.php?bookinfo=377270

Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. - 7-е изд. - М.: Физматлит, 2009. - 572 с. - http://e.lanbook.com/books/element.php?pl1_id=2206 Краткий курс функционального анализа: Учебное пособие. / Люстерник Л.А., Соболев В.И. 2-е изд., стер. ? Спб.: Издательство ?Лань?, 2009. - http://e.lanbook.com/view/book/245/ Наймарк, Марк Аронович. Линейные дифференциальные операторы / М. А. Наймарк.?Изд. 3-е.?Москва: Физматлит, 2010.?526 с.: ил.; 22.?(Классика и современность).?Указ..?Библиогр.: с. 499-519.?ISBN 978-5-9221-1259-8((в пер.)), 400. -

Павлова М.Ф., Тимербаев М.Р. Пространства Соболева - http://old.kpfu.ru/f9/bin_files/SobolevSpace.pdf

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Функциональный анализ" предполагает использование следующего материально-технического обеспечения:

Лекции и лабораторные занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом(маркером).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 231300.68 "Прикладная математика" и магистерской программе Математическое моделирование .

Автор(ы):	
Павлова М.Ф.	
" " 	_ 201 г.
Рецензент(ы):	
Соловьев С.И.	
н н	201 г.