МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Теория представлений групп и алгебр Ли с приложениями М2.ДВ.4

ŀ	4	аправление	подготовки:	<u>01</u>	1200.68	<u>- Физика</u>
		•				

Профиль подготовки: Теоретическая и математическая физика

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

\sim	гп.	A	$\mathbf{D} \mathbf{A}$	\Box
CO	1 / 1/	ACO	DA	пО

Заведующий(ая) кафедрой: Сушков С. В.		
Протокол заседания кафедры No от ""	201	_г
Учебно-методическая комиссия Института физики:		
Протокол заседания УМК No от ""	201г	

Регистрационный № 6131314

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) ассистент, б/с Патрин Е.В. Кафедра теории относительности и гравитации Отделение физики , Evgeny.Patrin@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины Теория представлений групп и алгебр Ли с приложениями являются получение знаний по основам теории представлений алгебр и групп Ли и их приложениям к классическим и квантовым системам.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.ДВ.4 Профессиональный" основной образовательной программы 011200.68 Физика и относится к дисциплинам по выбору. Осваивается на 1 курсе, 2 семестр.

Дисциплина (М.2.ДВ.4) входит в вариативную часть профессионального цикла (М.2) как дисциплина по выбору. Для освоения дисциплины необходимы знания дисциплин: теории групп и алгебр Ли элементов римановой и симплектической геометрий и основ функционального анализа с одной стороны и теоретической механики, квантовой механики и статистической физики и термодинамики с другой.

Освоение дисциплины необходимо для изучения дисциплин, связанных с квантовой теорией поля на искривлённых пространствах-временах (а также с квантовой гравитацией), и для успешной профессиональной деятельности.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ок-1	способность демонстрировать углубленные знания в области математики и естественных наук
пк-1	способность свободно владеть фундаментальными разделами физики, необходимыми для решения научно-исследовательских задач (в соответствии со своей магистерской программой);
пк-2	способность использовать знания современных проблем физики, новейших достижений физики в своей научно-исследовательской деятельности;
пк-3	научно-исследовательская деятельность: способность самостоятельно ставить конкретные задачи научных исследований в области физики (в соответствии с профилем магистерской программы) и решать их с помощью современной аппаратуры, оборудования, информационных технологий, использования новейшего отечественного и зарубежного опыта;
пк-5	способность использовать свободное владение профессионально- профилированными знаниями в области информационных технологий, современных компьютерных сетей, программных продуктов и ресурсов Интернет для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки;

Шифр компетенции	Расшифровка приобретаемой компетенции
пк-6	научно-инновационная деятельность: способность свободно владеть разделами физики, необходимыми для решения научно-инновационных задач (в соответствии с профилем подготовки);
	способность свободно владеть профессиональными знаниями для анализа и синтеза физической информации (в соответствии с профилем подготовки);

В результате освоения дисциплины студент:

- 1. должен знать:
- 2. должен уметь:
- 3. должен владеть:
- 4. должен демонстрировать способность и готовность:

использовать теоретические основы теории представлений групп и алгебр Ли при решении конкретных физических и математических задач, применять навыки построения квантовых систем по классическим системам с искривлённым фазовым пространством с использованием теории представлений и их исследованию; строить присоединённые, коприсоединённые и индуцированные представления различных конкретных групп и алгебр Ли, строить орбиты коприсоединённых представлений конкретных групп Ли и уметь строить по орбитам унитарные представления; .

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

	N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
		Модуля		1	Лекции	Практические занятия	Лабораторные работы	
		Тема 1. Топологические пространства и непрерывные отображения.	2	1-2	1	2	0	домашнее задание
2		Тема 2. Гладкие многообразия и гладкие отображения.	2	2-5	3	6	0	домашнее задание

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	
3	Тема 3. Группы и алгебры Ли. Группы Ли и некоторые конструкции с ними.	2	6-8	2	4	0	домашнее задание
4	Тема 4. Представления групп Ли (линейные, унитарные, проективные), и некоторые конструкции с ними	2	9-13	3	6	0	домашнее задание
5	Тема 5. Некоторые приложения теории представлений групп и алгебр Ли.	2	13-18	3	6	0	домашнее задание
	Тема . Итоговая форма контроля	2		0	0	0	зачет
	Итого			12	24	0	

4.2 Содержание дисциплины

Тема 1. Топологические пространства и непрерывные отображения.

лекционное занятие (1 часа(ов)):

Лекция Предварительные сведения. Топологические пространства и непрерывные отображения. Топология, окрестности, фактор-топология, индуцированная топология, базы и предбазы топологии, примеры. Гомеоморфизмы, прямое произведение топологичесих пространств.

практическое занятие (2 часа(ов)):

Задчи на построение топологий на конечных множествах и описание непрерывных отображений на полученных топологических пространствах.

Тема 2. Гладкие многообразия и гладкие отображения.

лекционное занятие (3 часа(ов)):

Лекция 2. Гладкие многообразия и гладкие отображения. Карты и атласы. Прямое произведение гладких многообразий. Подмногообразия, алгебры гладких функций на многообразиях, гладкие отображения, диффеоморфизмы. Лекция 3. . Касательный вектор, касательные и кокасательные пространства, касательные и кокасательные расслоения. Векторные и ковекторные поля. Прямые суммы и тензорные произведения расслоений. Тензорные расслоения. Лекция 4. Дифференциальные формы, внешний дифференциал, поведение векторных полей и дифференциальных форм при отображениях. Производная Ли.

практическое занятие (6 часа(ов)):

Построение атласов на сфере, торе, проективном пространстве

Тема 3. Группы и алгебры Ли. Группы Ли и некоторые конструкции с ними. *лекционное занятие (2 часа(ов)):*

Лекция 5. Группы и алгебры Ли. Группы Ли и подгруппы Ли в группе Ли, полупростые, простые, разрешимые и нильпотентные группы Ли, прямое и полупрямое произведения групп. Лекция 6. Алгебры Ли, алгебра Ли векторных полей на многообразии, связь между группами Ли и алгебрами Ли, экспонента и логарифм, подалгебры и идеалы алгебр Ли, полупростые, простые, разрешимые и нильпотентные алгебры Ли, коалгебры, коумножение в коалгебре.

практическое занятие (4 часа(ов)):

Построение группового умножения и отображений коумножения и обращения в карте для некоторых групп.

Тема 4. Представления групп Ли (линейные, унитарные, проективные), и некоторые конструкции с ними

лекционное занятие (3 часа(ов)):

Лекция 7. Теория представлений. Представления групп Ли (линейные, унитарные, проективные), сплетающие операторы, эквивалентные представления, подпредставления, фактор - представления групп Ли. Лекция 8. Приводимые и вполне приводимые представления групп Ли, присоединённое и коприсоёдиненное представления групп Ли представления алгебр Ли. Лекция 9. Связь между представлениями группы Ли и её алгеброй Ли, присоединённое и коприсоединённое представления алгебры Ли, прямые суммы и тензорные произведения представлений. Индуцированные представления.

практическое занятие (6 часа(ов)):

Построение примеров представлений и сплетающих операторов.

Тема 5. Некоторые приложения теории представлений групп и алгебр Ли. *лекционное занятие (3 часа(ов)):*

Лекции 10. Некоторые приложения теории представлений групп и алгебр Ли. Лекция 11. Орбиты коприсоединенного представления группы Ли как фазовые пространства систем классической механики. Лекция 12. Построение по орбите унитарного представления (метод орбит), обобщение на неоднородную ситуацию (геометрическое квантование).

практическое занятие (6 часа(ов)):

Построение примеров орбит. Квантование плоского фазового пространства.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Топологические пространства и непрерывные отображения.	2	1-2	подготовка домашнего задания	3	домашнее задание
2.	Тема 2. Гладкие многообразия и гладкие отображения.	2	2-5	подготовка домашнего задания	9	домашнее задание
3.	Тема 3. Группы и алгебры Ли. Группы Ли и некоторые конструкции с ними.	2	6-8	подготовка домашнего задания	l 6	домашнее задание
4.	Тема 4. Представления групп Ли (линейные, унитарные, проективные), и некоторые конструкции с ними	2	9-13	подготовка домашнего задания	9	домашнее задание
5.	Тема 5. Некоторые приложения теории представлений групп и алгебр Ли.	2	13-18	подготовка домашнего задания	9	домашнее задание
	Итого				36	

5. Образовательные технологии, включая интерактивные формы обучения

интернет-технологии, использование систем аналитических вычислений.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Топологические пространства и непрерывные отображения.

домашнее задание, примерные вопросы:

Предварительные сведения. Топологические пространства и непрерывные отображения. Топология, окрестности, фактор-топология, индуцированная топология, базы и предбазы топологии, примеры. Гомеоморфизмы, прямое произведение топологичесих пространств.

Тема 2. Гладкие многообразия и гладкие отображения.

домашнее задание, примерные вопросы:

Гладкие многообразия и гладкие отображения. Карты и атласы. Прямое произведение гладких многообразий. Подмногообразия, алгебры гладких функций на многообразиях, гладкие отображения, диффеоморфизмы. Касательный вектор, касательные и кокасательные пространства, касательные и кокасательные расслоения. Векторные и ковекторные поля. Прямые суммы и тензорные произведения расслоений. Тензорные расслоения. Дифференциальные формы, внешний дифференциал, поведение векторных полей и дифференциальных форм при отображениях. Производная Ли.

Тема 3. Группы и алгебры Ли. Группы Ли и некоторые конструкции с ними.

домашнее задание, примерные вопросы:

Группы и алгебры Ли. Группы Ли и подгруппы Ли в группе Ли, полупростые, простые, разрешимые и нильпотентные группы Ли, прямое и полупрямое произведения групп. Алгебры Ли, алгебра Ли векторных полей на многообразии, связь между группами Ли и алгебрами Ли, экспонента и логарифм, подалгебры и идеалы алгебр Ли, полупростые, простые, разрешимые и нильпотентные алгебры Ли, коалгебры, коумножение в коалгебре.

Тема 4. Представления групп Ли (линейные, унитарные, проективные), и некоторые конструкции с ними

домашнее задание, примерные вопросы:

Теория представлений. Представления групп Ли (линейные, унитарные, проективные), сплетающие операторы, эквивалентные представления, подпредставления, фактор - представления групп Ли. Приводимые и вполне приводимые представления групп Ли, присоединённое и коприсоёдиненное представления групп Ли представления алгебр Ли. Связь между представлениями группы Ли и её алгеброй Ли, присоединённое и коприсоединённое представления алгебры Ли, прямые суммы и тензорные произведения представлений. Индуцированные представления.

Тема 5. Некоторые приложения теории представлений групп и алгебр Ли.

домашнее задание, примерные вопросы:

Некоторые приложения теории представлений групп и алгебр Ли. Орбиты коприсоединенного представления группы Ли как фазовые пространства систем классической механики. Построение по орбите унитарного представления (метод орбит), обобщение на неоднородную ситуацию (геометрическое квантование).

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

ВОПРОСЫ К ЭКЗАМЕНУ/ЗАЧЕТУ

- 1. Топология, окрестности, фактор-топология, индуцированная топология, базы и предбазы топологии.
- 2. Гомеоморфизмы, прямое произведение топологичесих пространств.

- 3. Карты и атласы. Прямое произведение гладких многообразий.
- 4. Подмногообразия, алгебры гладких функций на многообразиях, гладкие отображения, диффеоморфизмы.
- 5. Касательный вектор, касательные и кокасательные пространства, касательные и кокасательные расслоения. Векторные и ковекторные поля.
- 6. Прямые суммы и тензорные произведения расслоений. Тензорные расслоения.
- 7. Дифференциальные формы, внешний дифференциал, поведение векторных полей и дифференциальных форм при отображениях. Производная Ли.
- 8. Группы Ли и подгруппы Ли в группе Ли.
- 9. Полупростые, простые, разрешимые и нильпотентные группы Ли.
- 10. Прямое и полупрямое произведения групп.
- 11. Алгебры Ли, подалгебры и идеалы алгебр Ли, алгебра Ли векторных полей на многообразии.
- 12. Связь между группами Ли и алгебрами Ли.
- 13. Полупростые, простые, разрешимые и нильпотентные алгебры Ли.
- 14. Представления групп Ли (линейные, унитарные, проективные), сплетающие операторы, эквивалентные представления.
- 15. Подпредставления, фактор представления групп Ли, приводимые и вполне приводимые представления групп Ли.
- 16. Связь между представлениями групп Ли и их алгебр Ли.
- 17. Прямые суммы и тензорные произведения представлений.
- 18. Присоединенное и коприсоединенное представления групп и алгебр Ли.
- 19. Орбиты коприсоединенного представления группы Ли.
- 20. Построение по орбите унитарного представления.

7.1. Основная литература:

Хамермеш, М. Теория групп и ее применение к физическим проблемам : перевод с английского / М. Хамермеш ; Пер. Ю. А. Данилова. - Издание 3-е. - Москва: Либроком, 2010 .- 584 с.

Наймарк М.А. Теория представлений групп. - М. Физматлит, 2010. - 576 с.

http://e.lanbook.com/view/book/2751/

Каргаполов М.И., Мерзляков Ю.И. Основы теории групп. - М.: Лань, 2009. - 288 с.

http://e.lanbook.com/view/book/177/

7.2. Дополнительная литература:

Ляпин Е. С., Аизенштат А. Я., Лесохин М. М. Упражнения по теории групп: Учебное пособие. 2-е изд., стер. СПб.: Издательство "Лань", 2010. - 272 с. http://e.lanbook.com/view/book/528/ Молев А.И. Янгианы и классические алгебры Ли. - М.: Изд-во МЦНМО, 2009. -534c.

7.3. Интернет-ресурсы:

Сайт кафедры теории относительности и гравитации КФУ - http://old.kpfu.ru/f6/k6/index.php?id=1

Теория представлений групп. Наймарк M.A. - http://e.lanbook.com/view/book/2751/

Электронная библиотека - http://eqworld.ipmnet.ru/indexr.htm

Электронная библиотека - http://znanium.com/

Электронная библиотека механико-математического факультета Московского государственного университета - http://lib.mexmat.ru/allbooks.php

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Теория представлений групп и алгебр Ли с приложениями" предполагает использование следующего материально-технического обеспечения:

учебные аудитории Института физики

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011200.68 "Физика" и магистерской программе Теоретическая и математическая физика .

Автор(ы):			
Патрин Е.В			
""	_ 201 _	_ г.	
Рецензент(ы):			
Даишев Р.А			
"_"	201	_ г.	