МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Автоматизированная система контроля разработки месторождений М2.В.2

Направление подготовки: <u>011800.68 - Радиофизика</u>
Профиль подготовки: Радиофизические методы по областям применений
Квалификация выпускника: магистр
Форма обучения: очное
Азык облавния: илсский

Язык обучения: русский Автор(ы):

Гаврилов А.Г. Рецензент(ы): Лунев И.В.

\sim	СП	I A .	\sim	\frown	D	Λ	ч	\sim	٠.
CO	1	А	U	U	סי	н	п	U	١.

		
Заведующий(ая) кафедрой: Овч Протокол заседания кафедры N		201г
Учебно-методическая комиссия Протокол заседания УМК No		201г
Регистрационный No 615914	Казань	

2014

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Гаврилов А.Г. Кафедра радиоэлектроники Отделение радиофизики и информационных систем , Alexander.Gavrilov@kpfu.ru

1. Цели освоения дисциплины

Целью освоения дисциплины (модуля) Автоматизированная система контроля разработки месторождений является познание основ гидродинамики флюидонасыщенных пористых сред, разделов общей физики, радиофизики и электроники в области современных информационных технологий и использования современных средств связи, знание основ прикладного программирования, усвоение новейших данных в области первичных датчиков измерения температуры, давления, расхода, водо и нефтенасыщенности.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.2 Профессиональный" основной образовательной программы 011800.68 Радиофизика и относится к вариативной части. Осваивается на 1 курсе, 1 семестр.

Данная учебная дисциплина входит в раздел профессиональных дисциплин ФГОС ВПО и ПрООП по направлению подготовки "Радиофизика", профиль подготовки: Радиофизические методы по областям применения.

Ее освоение предполагает знание основ общей физики, радиофизики, электроники и схемотехники, а также законов тепломассопереноса в насыщенных пористых средах.

Курс предназначен для магистрантов 1 года обучения, 1 семестр

Направление: 010800.68: Радиофизика

Магистратура "Радиофизические методы по областям применения"

М2.В.2, профессиональный цикл

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1 (профессиональные компетенции)	способность к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимыми для решения научно-исследовательских задач по исследованиям в области разработки и проектирования АСК
ПК-11 (профессиональные компетенции)	способность к ведению документации по научно-исследовательской работе (смет, заявок на материалы, оборудование) с учётом существующих требований и форм отчётности в области разработки и проектирования АСК
ПК-6 (профессиональные компетенции)	способность внедрять результаты прикладных научных исследований в перспективные приборы, устройства и системы. основанные на колебательно-волновых принципах функционирования для проблем разработки и проектирования АСК

В результате освоения дисциплины студент:

1. должен знать:

основы гидродинамики флюидонасыщенных пористых сред, разделов общей физики, радиофизики и электроники в области современных информационных технологий и использования современных средств связи, знание основ прикладного программирования, усвоение новейших данных в области первичных датчиков измерения температуры, давления, расхода, водо и нефтенасыщенности.

2. должен уметь:

ориентироваться в понимании современных проблем и новейших достижений физики и радиофизики в разработке и проектировании АСК в нефтяной промышленности.

3. должен владеть:

навыками творческого обобщения полученных знаний, конкретного и объективного изложения своих знаний в письменной и устной форме, применения полученных знаний о разработке АСК для осуществления контроля параметров флюидонасыщенных коллекторов гидродинамическими методами с применением различных вариантов радиоэлектронных систем в практике промысловых исследований.

4. должен демонстрировать способность и готовность:

применить полученные знания на практике в своей дальнейшей научно-исследовательской деятельности.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
				Лекции	Практические занятия	Лабораторные работы	•
1.	Тема 1. Промысловые и лабораторные нестационарные гидродинамические методы исследования флюидонасыщенных пластов.	1	1	2	0	0	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах Практические	аботы, ость	Текущие формы контроля
				Лекции	занятия	работы	
2.	Тема 2. Радиоэлектронная аппаратура для гидропрослушивания флюидонасыщенных пластов. Комплекс технических средств (КТС).	1	2	2	0	0	
3.	Тема 3. КТС шкафа контроллера куста скважин. КТС шкафа контроллера скважины.	1	3	0	2	0	
4.	Тема 4. Интерфейсные модули серии ADAM-4000.	1	4	0	2	0	
5.	Тема 5. Радиоэлектронная аппаратура для самопрослушивания системы ?пласт-скважина? методом высокочастотных фильтрационных волн давления.	1	5	2	0	0	
	Тема 6. Контрольно-измеритель приборы и датчики.	ьны ф	6	2	0	0	
7.	Тема 7. Лабораторные установки по изучению фильтрационных свойств пористых и трещиновато-пористых сред.	1	7	0	2	0	
8.	Тема 8. Продукция фирмы L-Card: модули общего назначения E-440 и E14-440.	1	8	0	2	0	
9.	Тема 9. Продукция фирмы L-Card: модульная крейтовая система LTR - многоканальная система сбора данных и управления.	1	9	2	0	0	

N	Раздел Дисиплины/	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	Модуля			Лекции	Практические занятия	, Лабораторные работы	
10.	Тема 10. Учебно-лабораторный комплекс по применению АСК на базе программируемого логического контроллера СРМ902-01.	1	10	2	0	0	
11.	Тема 11. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА: -оборудование КИПиА.	100 1	11	0	2	0	
12.	Тема 12. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА: -шкафы контроллеров �1 и �2 (ШК1 и ШК2)	1 1	12	0	2	0	
13.	Тема 13. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА: -АРМ преподавателя и студентов	1 1	13	2	0	0	
14.	Тема 14. Программное обеспечение (ПО) УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА.	ног ¹ о	14	0	2	0	
	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Итого			14	14	0	

4.2 Содержание дисциплины

Тема 1. Промысловые и лабораторные нестационарные гидродинамические методы исследования флюидонасыщенных пластов.

лекционное занятие (2 часа(ов)):

Нефтяной пласт - объект гидродинамических промысловых исследований. Фильтрационные параметры пласта(ФПП). Промысловые методы гидродинамических исследований. Фильтрационные волны давления. Фурье-анализ. Начальный информационный массив. Модели фильтрации. Инженерные формулы расчёта ФПП по классической модели фильтрации. Точные выражения. Погрешности оценочных приближённых формул. Условия линейности системы "пласт-скважина". "Малые" возмущения. Интерпретация результата промысловых исследований. Лабораторные методы исследования пористых сред. Условия теории подобия.

Тема 2. Радиоэлектронная аппаратура для гидропрослушивания флюидонасыщенных пластов. Комплекс технических средств (КТС).

лекционное занятие (2 часа(ов)):

АСКУ?ВП? автоматизированная система контроля и управления выработкой пласта. Структурная схема КТС? АСКУ-ВП?. АРМ Оператора. Программный комплекс АРМ Инженера. Сеть кустовых контроллеров. Micro PC фирмы Octagon Systems. Сеть контроллеров скважин. КТС шкафа контроллера скважины. Модули удаленного сбора данных серии ADAM-4000. . Питание модулей. Соединение и программирование. Удаленный коммутатор сигналов частотных датчиков.

Тема 3. КТС шкафа контроллера куста скважин. КТС шкафа контроллера скважины. практическое занятие (2 часа(ов)):

Сеть кустовых контроллеров. Micro PC фирмы Octagon Systems. Сеть контроллеров скважин. КТС шкафа контроллера скважины. Модули удаленного сбора данных серии ADAM-4000. . Питание модулей. Соединение и программирование. Техническое описание серии ADAM-4000.

Тема 4. Интерфейсные модули серии ADAM-4000.

практическое занятие (2 часа(ов)):

ADAM-4520 Converter. ADAM 4510 Repeater. Модуль частотомера АДАМ-4080D. Аналоговый входной модуль ADAM 4017. Основные схемы включения модулей. Программное обеспечение модулей ADAM 4000 и его возможности.

Тема 5. Радиоэлектронная аппаратура для самопрослушивания системы ?пласт-скважина? методом высокочастотных фильтрационных волн давления. лекционное занятие (2 часа(ов)):

Программно - технический комплекс (ПТК) сбора и регистрации данных для проведения гидродинамических исследований пластов и скважин("MOBILE-1"). Назначение ПТК. Технические характеристики ПТК. Комплектность. Устройство и принцип работы. Сервер регистрации данных и управления. Программа управления внешними устройствами и регистрацией данных. Программа отображения данных для системы регистрации данных.

Тема 6. Контрольно-измерительные приборы и датчики.

лекционное занятие (2 часа(ов)):

Манометры и уровнемеры. Расходомеры. Паспортные характеристики КИП. Устьевые скважинные манометры. Устьевые расходомеры. Глубинные манометры. Автоматические промысловые эхолоты-уровнемеры. Примеры промысловых исследований. Опытный участок Центрально-Азнакаевской площади. Берёзовская площадь Ромашкинского месторождения. Высокочастотные исследования методом ФВД системы "пласт-скважина".

Тема 7. Лабораторные установки по изучению фильтрационных свойств пористых и трещиновато-пористых сред.

практическое занятие (2 часа(ов)):

Лабораторные установки по исследованию границ применимости принципа ЛТР подхода при описании фильтрационных процессов. Блок управления давлением. Модель пласта. Датчики давления марки Honeywell? MLH150PSB01A. Аналого-цифровой преобразователь АЦП ЦАП "E-440". ПО модуля "E-440". Перистальтический насос Watson-Marlow 620Du.

Тема 8. Продукция фирмы L-Card: модули общего назначения E-440 и E14-440. практическое занятие (2 часа(ов)):

Аналого-цифровой преобразователь АЦП ЦАП "Е-440". Назначение модуля. Технические характеристики модуля. "Программно-аппаратный комплекс для исследования быстрых периодических процессов" на базе модуля "Е-440". Аппаратная часть комплекса. Состав программного комплекса.

Тема 9. Продукция фирмы L-Card: модульная крейтовая система LTR - многоканальная система сбора данных и управления.

лекционное занятие (2 часа(ов)):

Крейтовая система LTR-U-8 (8-местный крейт с интерфейсом USB 2.0 High Speed). Модуль управления LTR43. Измерительный модуль LTR27. Назначение устройства. Характеристики АЦП. Модуль измерительный LTR22. Модуль измерительный LTR51. Субмодули H-27х: H-27I-10? измеритель тока, H-27U-10? измеритель напряжения.

Тема 10. Учебно-лабораторный комплекс по применению АСК на базе программируемого логического контроллера СРМ902-01.

лекционное занятие (2 часа(ов)):

"Учебно-лабораторный комплекс по применению автоматизированных систем для исследования явлений переноса в пористых средах". Описание комплекса технических средств. Структура учебно-лабораторного комплекса. Оборудование КИПиА. Оборудование шкафа контроллера. Оборудование АРМ преподавателя и АРМ студентов. Системное ПО. Инструментальное ПО: Пакет Genesis32, Среда разработки Fastwel IO Codesys Adaptation, Среда разработки Weintek EasyBuilder 8000. Прикладное ПО.

Тема 11. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА: -оборудование КИПиА. практическое занятие (2 часа(ов)):

Контрольно-измерительные приборы и датчики. Контроллер СРМ902, Модуль AIM731, Модуль DIM713, Модуль DIM718, Модуль DIM 764, Модуль OM751, Модуль OM751, Модуль OM758, Модуль OM759, Лаб.раб. ♦1.

Тема 12. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА: -шкафы контроллеров ♦1 и ♦2 (ШК1 и ШК2)

практическое занятие (2 часа(ов)):

Контроллер СРМ902, Модуль AIM722, Модуль AIM724, Модуль AIM725, Модуль AIM728, , Модуль DIM717, Модуль OM796, Графическая панель оператора WT3010. Лаб.раб. �4.

Тема 13. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА: -АРМ преподавателя и студентов

лекционное занятие (2 часа(ов)):

Верхний уровень: автоматизированные рабочиее места (APM) преподавателя и студентов. Назначение. Структура APM преподавателя. Оборудование APM преподавателя. Оборудование APM студента. Программное взаимодействие оборудования учебно-лабораторного комплекса.

Тема 14. Программное обеспечение (ПО) УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА. практическое занятие (2 часа(ов)):

Инструментальное ПО: Пакет Genesis32, Среда разработки Fastwel IO Codesys Adaptation, Среда разработки Weintek EasyBuilder 8000. Прикладное ПО. Лабораторная работа ♦2: ?Принцип работы и способы конфигурирования контроллера Fastwel CPM902 в качестве подчиненного узла (сервера) сети Modbus?. Лабораторная работа ♦3:?Изучение явлений теплообмена с использованием пакета программ GENESIS32?.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

	N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
-	1.	Тема 1. Промысловые и лабораторные нестационарные гидродинамические методы исследования флюидонасыщенных пластов.	1	1	обзор литературы по теме (2-Зпечатных листа)	3	Реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Радиоэлектронная аппаратура для гидропрослушивания флюидонасыщенных пластов. Комплекс технических средств (КТС).	1	2	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
3.	Тема 3. КТС шкафа контроллера куста скважин. КТС шкафа контроллера скважины.	1	3	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
4.	Тема 4. Интерфейсные модули серии ADAM-4000.	1	4	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
5.	Тема 5. Радиоэлектронная аппаратура для самопрослушивания системы ?пласт-скважина? методом высокочастотных фильтрационных волн давления.	1	5	обзор литературы по теме (2-Зпечатных листа)	4	Реферат
	Тема 6. Контрольно-измеритель приборы и датчики.	ьны ф	6	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
7.	Тема 7. Лабораторные установки по изучению фильтрационных свойств пористых и трещиновато-пористых сред.	1	7	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
8.	Тема 8. Продукция фирмы L-Card: модули общего назначения E-440 и E14-440.	1	8	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
9.	Тема 9. Продукция фирмы L-Card: модульная крейтовая система LTR - многоканальная система сбора данных и управления.	1	9	обзор литературы по теме (2-Зпечатных листа)	3	Реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
10.	Тема 10. Учебно-лабораторный комплекс по применению АСК на базе программируемого логического контроллера СРМ902-01.	1	10	обзор литературы по теме (2-Зпечатных листа)	4	Реферат
11.	Тема 11. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА: -оборудование КИПиА.	10ГО 1	11	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
12.	Тема 12. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА: -шкафы контроллеров �1 и �2 (ШК1 и ШК2)	10FO	12	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
13.	Тема 13. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА: -АРМ преподавателя и студентов	10FO	13	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
14.	Тема 14. Программное обеспечение (ПО) УЧЕБНО-ЛАБОРАТОРЬ КОМПЛЕКСА.	ног ¹ 0	14	обзор литературы по теме (2-Зпечатных листа)	3	Реферат
	Итого				44	

5. Образовательные технологии, включая интерактивные формы обучения

Используются такие интерактивные формы обучения как решение задач и лабораторные работы.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Промысловые и лабораторные нестационарные гидродинамические методы исследования флюидонасыщенных пластов.

Реферат, примерные вопросы:

Нефтяной пласт - объект гидродинамических промысловых исследований. Фильтрационные параметры пласта(ФПП). Промысловые методы гидродинамических исследований. Фильтрационные волны давления. Фурье-анализ. Начальный информационный массив. Модели фильтрации. Инженерные формулы расчёта ФПП по классической модели фильтрации. Точные выражения. Погрешности оценочных приближённых формул. Условия линейности системы "пласт-скважина". "Малые" возмущения. Интерпретация результата промысловых исследований. Лабораторные методы исследования пористых сред. Условия теории подобия.

Тема 2. Радиоэлектронная аппаратура для гидропрослушивания флюидонасыщенных пластов. Комплекс технических средств (КТС).

Реферат, примерные вопросы:

АСКУ?ВП? автоматизированная система контроля и управления выработкой пласта. Структурная схема КТС? АСКУ-ВП?. АРМ Оператора. Программный комплекс АРМ Инженера. Сеть кустовых контроллеров. Micro PC фирмы Octagon Systems. Сеть контроллеров скважин. КТС шкафа контроллера скважины. Модули удаленного сбора данных серии ADAM-4000. . Питание модулей. Соединение и программирование. Удаленный коммутатор сигналов частотных датчиков.

Тема 3. КТС шкафа контроллера куста скважин. КТС шкафа контроллера скважины.

Реферат, примерные вопросы:

Сеть кустовых контроллеров. Micro PC фирмы Octagon Systems. Сеть контроллеров скважин. КТС шкафа контроллера скважины. Модули удаленного сбора данных серии ADAM-4000. . Питание модулей. Соединение и программирование. Техническое описание серии ADAM-4000.

Тема 4. Интерфейсные модули серии ADAM-4000.

Реферат, примерные вопросы:

ADAM-4520 Converter. ADAM 4510 Repeater. Модуль частотомера АДАМ-4080D. Аналоговый входной модуль ADAM 4017. Основные схемы включения модулей. Программное обеспечение модулей ADAM 4000 и его возможности.

Тема 5. Радиоэлектронная аппаратура для самопрослушивания системы ?пласт-скважина? методом высокочастотных фильтрационных волн давления.

Реферат, примерные вопросы:

Программно - технический комплекс (ПТК) сбора и регистрации данных для проведения гидродинамических исследований пластов и скважин("MOBILE-1"). Назначение ПТК. Технические характеристики ПТК. Комплектность. Устройство и принцип работы. Сервер регистрации данных и управления. Программа управления внешними устройствами и регистрацией данных. Программа отображения данных для системы регистрации данных.

Тема 6. Контрольно-измерительные приборы и датчики.

Реферат, примерные вопросы:

Манометры и уровнемеры. Расходомеры. Паспортные характеристики КИП. Устьевые скважинные манометры. Устьевые расходомеры. Глубинные манометры. Автоматические промысловые эхолоты-уровнемеры. Примеры промысловых исследований. Опытный участок Центрально-Азнакаевской площади. Берёзовская площадь Ромашкинского месторождения. Высокочастотные исследования методом ФВД системы "пласт-скважина".

Тема 7. Лабораторные установки по изучению фильтрационных свойств пористых и трещиновато-пористых сред.

Реферат, примерные вопросы:

Лабораторные установки по исследованию границ применимости принципа ЛТР подхода при описании фильтрационных процессов. Блок управления давлением. Модель пласта. Датчики давления марки Honeywell? MLH150PSB01A. Аналого-цифровой преобразователь АЦП ЦАП "E-440". ПО модуля "E-440". Перистальтический насос Watson-Marlow 620Du.

Тема 8. Продукция фирмы L-Card: модули общего назначения E-440 и E14-440.

Реферат, примерные вопросы:

Аналого-цифровой преобразователь АЦП ЦАП "Е-440". Назначение модуля. Технические характеристики модуля. "Программно-аппаратный комплекс для исследования быстрых периодических процессов" на базе модуля "Е-440". Аппаратная часть комплекса. Состав программного комплекса.

Тема 9. Продукция фирмы L-Card: модульная крейтовая система LTR - многоканальная система сбора данных и управления.

Реферат, примерные вопросы:

Крейтовая система LTR-U-8 (8-местный крейт с интерфейсом USB 2.0 High Speed). Модуль управления LTR43. Измерительный модуль LTR27. Назначение устройства. Характеристики АЦП. Модуль измерительный LTR22. Модуль измерительный LTR51. Субмодули H-27x: H-27I-10? измеритель тока, H-27U-10? измеритель напряжения.

Тема 10. Учебно-лабораторный комплекс по применению АСК на базе программируемого логического контроллера СРМ902-01.

Реферат, примерные вопросы:

"Учебно-лабораторный комплекс по применению автоматизированных систем для исследования явлений переноса в пористых средах". Описание комплекса технических средств. Структура учебно-лабораторного комплекса. Оборудование КИПиА. Оборудование шкафа контроллера. Оборудование АРМ преподавателя и АРМ студентов. Системное ПО. Инструментальное ПО: Пакет Genesis32, Среда разработки Fastwel IO Codesys Adaptation, Среда разработки Weintek EasyBuilder 8000. Прикладное ПО.

Тема 11. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА: -оборудование КИПиА.

Реферат, примерные вопросы:

Контрольно-измерительные приборы и датчики. Контроллер СРМ902, Модуль AIM731, Модуль DIM713, Модуль DIM718, Модуль DIM 764, Модуль ОМ751, Модуль ОМ751, Модуль ОМ758, Модуль ОМ759, Лаб.раб. ♦1.

Тема 12. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА: -шкафы контроллеров ♦1 и ♦2 (ШК1 и ШК2)

Реферат, примерные вопросы:

Контроллер СРМ902, Модуль AIM722, Модуль AIM724, Модуль AIM725, Модуль AIM728, , Модуль DIM717, Модуль OM796, Графическая панель оператора WT3010. Лаб.раб. �4.

Тема 13. СТРУКТУРА УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА: -АРМ преподавателя и студентов

Реферат, примерные вопросы:

Верхний уровень: автоматизированные рабочиее места (APM) преподавателя и студентов. Назначение. Структура APM преподавателя. Оборудование APM преподавателя. Оборудование APM студента. Программное взаимодействие оборудования учебно-лабораторного комплекса.

Тема 14. Программное обеспечение (ПО) УЧЕБНО-ЛАБОРАТОРНОГО КОМПЛЕКСА.

Реферат, примерные вопросы:

Инструментальное ПО: Пакет Genesis32, Среда разработки Fastwel IO Codesys Adaptation, Среда разработки Weintek EasyBuilder 8000. Прикладное ПО. Лабораторная работа �2: ?Принцип работы и способы конфигурирования контроллера Fastwel CPM902 в качестве подчиненного узла (сервера) сети Modbus?. Лабораторная работа �3:?Изучение явлений теплообмена с использованием пакета программ GENESIS32?.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Для аттестации студентов проводится зачет.

На практических занятиях рассматриваются вопросы организационной структуры различных предприятий в виде индивидуальных докладов-презентаций учащихся с дискуссией по разделам курса.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

- 1. Классическая модель (КМ) фильтрации. Постановка задачи и решение диф. уравнения для давления применительно к методу фильтрационных волн давления (ФВД).
- 2. Гидродинамические методы исследования флюидонасыщенных пластов и скважин.
- 3. Стационарные и нестационарные ГДИС.
- 4. Начальный информационный массив при самопрослушивании методом ФВД (графическое представление).

- 5. Начальный информационный массив при гидропрослушивании методом ФВД (графическое представление).
- 6. Математическая обработка результатов исследования межскважинных интервалов пласта (Фурье-анализ).
- 7. Условия проведения промыслового эксперимента по гидропрослушиванию пласта методом ФВД.

ПРИМЕРНЫЕ ВОПРОСЫ К ЗАЧЕТУ

- 1. Устьевая обвязка скважины и установка КИП при самопрослушивании системы "пласт-скважина".
- 2. КИП для гидропрослушивания межскважинных интервалов пласта (методом ФВД).
- 3. Аппаратура для самопрослушивания системы "пласт-скважина" (блок-схема).
- 4. Аппаратура для гидропрослушивания пласта (блок-схема).
- 5. Высокочастотное исследование призабойной зоны скважины.
- 6. Контрольно-измерительные приборы (КИП) и их паспортные характеристики.
- 7. Скважинные манометры и уровнемеры.
- 8. Устьевые расходомеры.
- 9. Устьевые и глубинные манометры с местной регистрацией сигнала.
- 10. Модули общего назначения "Е-440" и "Е14-440".
- 11. Модульная крейтовая система "LTR".
- 12. Интерфейсные модули серии ADAM-4000.
- 13. Класс точности прибора.
- 14. Основная и дополнительная погрешности измерения прибора.
- 15. Разрешающая способность КИП.
- 16. Пределы измерения КИП.
- 17. Допустимая перегрузка КИП.
- 18. Калибровка прибора.
- 19. Контроллер СРМ902.
- 20. Оборудование шкафа контроллера СРМ902.
- 21. АРМ преподавателя и студента.
- 22. Графическая панель оператора WT3010.
- 23. Среда разработки Weintek EasyBuilder 8000.
- 24. Измерительный модуль LTR27.
- 25. Крейтовая система LTR-U-8.

7.1. Основная литература:

1. Гаврилов А.Г. Средства контроля гидродинамических потоков в скважинных условиях и расчёты фильтрационных параметров пластов. Учебно-методическое пособие / М.Н.Овчинников, Г.Г.Куштанова, А.Г. Гаврилов - Казань: Казанский (приволжский) федеральный университет, 2012. - 130с. [Электронный ресурс]. - Режим доступа: http://www.kpfu.ru/docs/F1805167370/sredstva_kontrolya_gd_potokov_32.pdf 2.Гаврилов А.Г. Радиоэлектронные системы контроля параметров флюидонасыщенных пластов. Учебно-методическое пособие / А.Г. Гаврилов, М.Н. Овчинников, В.Л. Одиванов - Казань: Казанский (приволжский) федеральный университет, 2010. - 92с. [Электронный ресурс]. - Режим доступа:http://www.kpfu.ru/docs/F2064991677/gavrilov MNO odivanov.pdf

3.Куштанова Г.Г., Овчинников М.Н. Подземная гидромеханика. Учебно-методическое пособие к курсу лекций. Казань: КФУ - 2010, 67 с.// http://www.kpfu.ru/docs/F1070764481/ovchin kushtan podzemn gidromehanika.pdf

7.2. Дополнительная литература:

1. Мазо А.Б. Гидродинамика: учебное пособие для студентов нематематических факультетов / А.Б. Мазо, К. А. Поташев; Казан. (Приволж.) федер. ун-т. Изд. 2. Казань: Казанский университет, 2013. 124 c. URL:http://libweb.ksu.ru/ebooks/publicat/0-772753.pdf

7.3. Интернет-ресурсы:

ADAM-4520 - RS-232 to RS-422/485 Converters - Advantech [Электронный ресурс] - http://www.advantech.ru/products/RS-232-to-RS-422-485-Converters/mod_GF-5V6L.aspx

АСУ ТП и АСУП [Электронный ресурс] - http://www.adastra.ru/products/

Гаврилов А.Г. Исследования призабойной зоны скважины методом высокочастотного фильтрационного зондирования. / Гаврилов А.Г., Марданшин А.Н., Овчинников М.Н., Штанин А.В. // Электронный журнал ?Нефтегазовое дело?.-2006.-С. -

http://www.ogbus.ru/authors/Gavrilov/Gavrilov 1.pdf

Измерение расхода [Электронный ресурс] -

http://www.etalon-chel.ru/device/expense/expense_54.html

Система распределенной регистрации данных [Электронный ресурс] -

http://odivanov.narod.ru/Systreg.html

Центральный сервер регистрации данных [Электронный ресурс] -

http://odivanov.narod.ru/Flex.html

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Автоматизированная система контроля разработки месторождений" предполагает использование следующего материально-технического обеспечения:

Переносное демонстрационное оборудование (мультимедийные проектор, ноутбук).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011800.68 "Радиофизика" и магистерской программе Радиофизические методы по областям применений .

Программа дисциплины "Автоматизированная система контроля разработки месторождений"; 011800.68 Радиофизика; доцент, к.н. Гаврилов А.Г.

Автор(ы):			
Гаврилов А.Г.			
"	_ 201	г.	
Рецензент(ы): Лунев И.В.			
"_"	_ 201	г.	