МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

УТВЕРЖДАЮ

Программа дисциплины

Дополнительные главы теории краевых задач М2.В.3

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Кац Б.А. Кафедра математического анализа отделение математики, Boris.Kac@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины "Дополнительные главы теории краевых задач" являются: получение базовых знаний по современным достижениям в теории краевых задач для аналитических функций и связанных с ней разделах анализа. Теория краевой задачи Римана-Гильберта и тесно связанная с ней теория сингулярных интегральных уравнений была создана и развита в результате усилий главным образом советских математиков. Многие достижения в этой области связаны с именами ученых, работавших в разные годы в Казанском университете. Однако в последние десятилетия в этой области появились новые достижения, полученные главным образом зарубежными учеными и не вошедшие в учебные курсы российских университетов. Таким образом, помимо общенаучного и прикладного интереса. изучение этого курса позволяет познакомить студентов с последними достижениями мировой науки в данной области. К числу базовых знаний в этой области относятся такие концепции и факты, как матричная задача Римана-Гильберта и ее применение в теории ортогональных многочленов (подход Дейфта-Чжоу), связь краевой задачи Римана с теорией целых функций, преобразование Коши обобщенных функций и его приложения в краевой задаче Римана. При освоении дисциплины вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для решения задач, связанных с приложениями краевых задач.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.3 Профессиональный" основной образовательной программы 010100.68 Математика и относится к дисциплинам по выбору студента. Осваивается на 1 курсе, 1 семестр.

Дисциплина по выбору входит в вариативную часть блока М2 - профессиональный цикл. Отчетность - экзамен.

Получаемые знания необходимы для понимания и освоения других курсов, связанных с теорией функций комплексного переменного, а также профильных дисциплин направления "Математика".

Слушатели должны владеть знаниями по дисциплинам математический анализ, теория функций комплексного переменного, функциональный анализ.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

В результате освоения дисциплины студент:

1. должен знать:

основные понятия и результаты, полученные в теории краевых задач в последние десятилетия (матричная задача Римана-Гильберта и ее применение в теории ортогональных многочленов (подход Дейфта-Чжоу), связь краевой задачи Римана с теорией целых функций, преобразование Коши обобщенных функций и его приложения в краевой задаче Римана, различные метрические размерности).

2. должен уметь:

решать матричную краевую задачу Римана в постановке Итса - Китаева - Фокаса. Уметь вычислять ортогональные многочлены с простейшими весами и их асимптотики.

3. должен владеть:

преобразованием Коши обобщенных функций с носителями на комплексной плоскости, различными метрическими размерностями.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	семестра	(в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Матричная краевая задача Римана-Гильберта и ее применение в теории ортогональных многочленов	9	1-10	0	0	0	
2.	Тема 2. Преобразование Коши обобщенных функций. Краевая задача Римана на неспрямляемых контурах	9	11-17	0	0	0	
3.	Тема 3. Экзамен	9		0	0	0	
	Тема . Итоговая форма контроля	1		0	0	0	экзамен
	Итого			0	0	0	

4.2 Содержание дисциплины

Тема 1. Матричная краевая задача Римана-Гильберта и ее применение в теории ортогональных многочленов

Тема 2. Преобразование Коши обобщенных функций. Краевая задача Римана на неспрямляемых контурах

Тема 3. Экзамен

5. Образовательные технологии, включая интерактивные формы обучения

лекции, лабораторные занятия, контрольные работы, коллоквиум, зачёт и экзамен. В течение семестра студенты решают задачи, указанные преподавателем, к каждому лабораторному занятию. Проводятся контрольные и самостоятельные работы. К экзамену допускаются студенты, показавшие положительные результаты по текущей работе в течение семестра.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Матричная краевая задача Римана-Гильберта и ее применение в теории ортогональных многочленов

Тема 2. Преобразование Коши обобщенных функций. Краевая задача Римана на неспрямляемых контурах

Тема 3. Экзамен

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

все виды текущего контроля успеваемости и аттестации по итогам освоения дисциплины оцениваются по 100-балльной рейтинговой системе, принятой к КФУ. Экзамены оцениваются переводом набранных по дисциплине баллов в оценки: неудовлетворительно, посредственно, удовлетворительно, хорошо, очень хорошо, отлично.

7.1. Основная литература:

- 1. P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann Hilbert Approach. New York, Providence: AMS, 2000. 261 p.
- 2. Аптекарев А.И. Точные константы рациональных аппроксимаций аналитических функций. Математический сборник, 193, �1 (2002), с. 3-72

7.2. Дополнительная литература:

- 3. A.B.J. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, M. Vanlessen. The Riemann Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]. Advances in Mathematics. 188(2004), p.337-398
- 4. Кац Б.А. Краевая задача Римана на негладких дугах и фрактальные размерности. Алгебра и Анализ. т.6. ♦ 1. с. 172 202.

7.3. Интернет-ресурсы:

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Дополнительные главы теории краевых задач" предполагает использование следующего материально-технического обеспечения:

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010100.68 "Математика" и магистерской программе Функциональный анализ.

Программа дисциплины "Дополнительные главы теории краевых задач"; 010100.68 Математика; профессор, д.н. (профессор) Кац Б.А.

Автор(ы):	
Кац Б.А	
""	_201 г.
Рецензент(ы):	
""	_ 201 г.