МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт фундаментальной медицины и биологии

УТВЕРЖДАЮ

Программа дисциплины

Общая химия Б3+.В.1.1

Направление подготовки: 050100.62 - Педагогическое образование
Профиль подготовки: <u>Биология и химия</u>
Квалификация выпускника: <u>бакалавр</u>
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Низамов И.Д.
Рецензент(ы):
<u>Гильманшина С.И.</u>
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Гильманшина С. И.
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института фундаментальной медицины и биологии:
Протокол заседания УМК No от "" 201г
D
Регистрационный No
Казань
2016

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Низамов И.Д. Кафедра химического образования Химический институт им. А.М. Бутлерова, IDNizamov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины "Общая химия" являются:

- 1. Сформировать у студентов, теоретический фундамент для дальнейшего изучения химических и естественных наук, способствовать приобретению студентами знаний по основным вопросам общей и неорганической химии;
- 2. Развить творческое мышление и научное мировоззрение, раскрыть методологию химической науки.
- 3. Показать связь химии с жизнью современного общества и её роль в решении экологических проблем.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б3+.В.1 Профессиональный" основной образовательной программы 050100.62 Педагогическое образование и относится к вариативной части. Осваивается на 1 курсе, 1 семестр.

Дисциплина "Общая химия" относится к разделу Б.З. профессионального цикла, вариативной части В.1.

Дисциплина дает студенту представление об общих понятиях и законах химии, включая периодический закон, теорию химической связи, учение о растворах, энергетику химических процессов, окислительно-восстановительные реакции, химию комплексных соединений. Углубляет знания студентов, полученных в школьном курсе.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции				
CK-1	владеет основами неорганической химии				
II .K = /	имеет представление о строении молекул и основах квантовой химии				

В результате освоения дисциплины студент:

1. должен знать:

Основные понятия и законы химии; Строение атомов и молекул; Основные квантово-механические представления об образовании химических связей; Основные классы неорганических соединений; Номенклатуру неорганических соединений; Физико-химические методы исследования веществ; Периодический закон; Термодинамику и кинетику химических процессов; Свойства растворов; Теорию электролитической диссоциации; Окислительно-восстановительные реакции.

2. должен уметь:

Использовать основных понятий и законов в решении химических задач; Показать принципы, лежащие в основе классификации соединений и химических реакций; Ознакомить с термодинамикой и кинетикой химических процессов; Производить расчёты по приготовлению растворов.

3. должен владеть:

Техникой проведения химических экспериментов лабораторных условиях; О наиболее известных способах и используемом оборудовании; Техникой безопасности при выполнении эксперимента; Основами химической науки для дальнейшего глубокого изучения предметов химического цикла.

использовать основных понятий и законов в решении химических задач.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 6 зачетных(ые) единиц(ы) 216 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	модуля			Лекции	Практические занятия	, Лабораторные работы	
1.	Тема 1. Химия как наука. Структура химии. Основание понятия и теории, стехиометрические законы.	1	1	2	0	4	
2.	Тема 2. Атом как мельчайшая частица химического элемента. Электронная структура атомов.	1	2	2	0	4	
3.	Тема 3. Периодический закон и периодическая система элементов Д.И. Менделеева.	1	3	2	0	4	
4.	Тема 4. Химическая связь.	1	4	2	0	4	
5.	Тема 5. Метод молекулярных орбиталей.	1	5	2	0	4	
6.	Тема 6. Химические системы и их термодинамическая характеристика.	1	6	2	0	4	

N	Раздел Дисциплины/ Модуля				Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
	шодуля			Лекции	Практические занятия	лабораторные работы	
7.	Тема 7. Химическая кинетика и её основной закон.	1	7	2	0	4	
8.	Тема 8. Обратимые и необратимые реакции.	1	8	2	0	4	
9.	Тема 9. Растворы и их свойства.	1	9	2	0	4	
	Тема 10. Электролитическая ионизация.	1	10	2	0	4	
11.	Тема 11. Реакции, идущие без изменения степени окисления.	1	11	2	0	4	
12.	Тема 12. Окислительно-восстано реакции.	вительн	ные12	2	0	4	
13.	Тема 13. Практическая работа. Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реаги-рующих веществ, температуры и катализаторов.	1	13	0	0	4	
	Тема 14. Упражнения и задачи. Физико-химическая теория растворения. Способы выражения концентрации растворов.	1	14	0	0	4	
15.	Тема 15. Практическая работа. Диссоциация электролитов.	1	15	0	0	4	
	Тема 16. Упражнения и задачи. Произведение растворимости. Ионное произведение воды и водородный показатель.	1	16	0	0	4	
	Тема 17. Практическая работа. Гидролиз солей.	1	17	0	0	4	

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	-
18.	Тема 18. Упражнения и задачи. Окислительно-восстано реакции. Окисли-тельно-восстан потенциалы. Законы Фарадея.	1	18	0	0	4	
19.	Тема 19. Практическая работа. Реакции окисления и восстановления.	1	19	0	0	4	
20.	Тема 20. Контрольная работа по теме: ?Окислительно-восстан реакции и электрохимические системы?.	ювителі	^{ные} 20	0	0	2	
	Тема . Итоговая форма контроля	1		0	0	0	экзамен
	Итого			24	0	78	

4.2 Содержание дисциплины

Тема 1. Химия как наука. Структура химии. Основание понятия и теории, стехиометрические законы.

лекционное занятие (2 часа(ов)):

Структура химии. Основание понятия и теории, стехиометрические законы. Закон эквивалентов, постоянства состава. Дальтониды и бертоллиды. Закон кратных отношений. Газовые законы. Лабораторная работа

лабораторная работа (4 часа(ов)):

(ЛБ): Общие правила работы в химической лаборатории. Техника безопасности. Химическое оборудование и реактивы, обращение с ними.

Тема 2. Атом как мельчайшая частица химического элемента. Электронная структура атомов.

лекционное занятие (2 часа(ов)):

Атом как мельчайшая частица химического элемента. Модели атома: Томпсона, Резерфорда, Бора. Уравнение Шредингера, Луи де Бройля и принцип неопределенности Гейзенберга. Состояние электрона в атоме. Изотопы, изобары. Квантовые числа. Форма электронных облаков и их расположение в пространстве. Структура электронной оболочки и принципы её заполнения. Электронная конфигурация атомов и ионов.

лабораторная работа (4 часа(ов)):

Решение задач: Газовые законы, закон Авогадро, следствие из него. Законы эквивалентов, постоянства состава, кратных и объемных отношений, сохранения массы веществ. Весы и взвешивание.

Тема 3. Периодический закон и периодическая система элементов Д.И. Менделеева. *лекционное занятие (2 часа(ов)):*

Периодический закон и периодическая система элементов Д.И. Менделеева. Емкость периодов. Группы, подгруппы и семейства. Свойства химических элементов? свободных атомов и атомов в веществе. Потенциал ионизации, сродство к электрону, радиус, электроотрицательность, изменение этих величин по периодам и группам.

лабораторная работа (4 часа(ов)):

ЛБ: Определение эквивалентной массы металла.

Тема 4. Химическая связь.

лекционное занятие (2 часа(ов)):

Химическая связь. Природа химической связи. Основные типы химической связи. Межмолекулярные взаимодействия. Параметры химической связи. Механизмы образования химической связи (МВС, донорно-акцепторный, ММО).

лабораторная работа (4 часа(ов)):

ЛБ: Определение молярной массы оксида углерода (IV).

Тема 5. Метод молекулярных орбиталей.

лекционное занятие (2 часа(ов)):

Метод молекулярных орбиталей (ММО). Образование гомо- и гетеронуклеарных двухатомных молекул. Диамагнетики и парамагнетики. Сравнение МВС и ММО. Решение задач: Определение типов кристаллических решеток, геометрии молекул и гибридизации атомов.

лабораторная работа (4 часа(ов)):

Решение задач: Состав атома. Электронная оболочка атома и порядок её заполнения.

Тема 6. Химические системы и их термодинамическая характеристика.

лекционное занятие (2 часа(ов)):

Химические системы и их термодинамическая характеристика. Закон Гесса и следствие из него. Энтальпия, энтропия. 1-ый и 2-ой закон термодинамики. Свободная энергия Гиббса и направленность химических процессов.

лабораторная работа (4 часа(ов)):

ЛБ: Нахождение формулы кристаллогидрата и выхода оксида меди (II) при прокаливании малахита.

Тема 7. Химическая кинетика и её основной закон.

лекционное занятие (2 часа(ов)):

Химическая кинетика и её основной закон. Зависимость скорости реакции от различных факторов. Механизм и глубина химических процессов. Типы химических реакций.

лабораторная работа (4 часа(ов)):

Решение задач: Ионная и металлическая связи. Типы кристаллических решеток. Гибридизация атомных орбиталей и геометрия молекул. Структура периодической системы. Периодический закон как основа систематики химических элементов и их соединений.

Тема 8. Обратимые и необратимые реакции.

лекционное занятие (2 часа(ов)):

Обратимые и необратимые реакции. Химическое равновесие и условия его смещения. Принципы Ле Шателье. Константы равновесия, диссоциации и др. Катализ и катализаторы.

лабораторная работа (4 часа(ов)):

Решение задач: Построение диаграмм и написание электронных формул гомо- и гетеронуклеарных двух атомных молекул.

Тема 9. Растворы и их свойства.

лекционное занятие (2 часа(ов)):

Растворы и их свойства. Дисперсные системы и их классификация. Физико-химическая теория растворов. Концентрация растворов. Законы разбавленных растворов.

лабораторная работа (4 часа(ов)):

Решение задач: Термодинамические расчёты определения направленности химических процессов. Термохимические уравнения.

Тема 10. Электролитическая ионизация.

лекционное занятие (2 часа(ов)):

Электролитическая ионизация (диссоциация). Степень и константа диссоциации. Активность, коэффициент активности. Кислотно-основная ионизация. Сила кислот и оснований.

лабораторная работа (4 часа(ов)):

Решение задач: Закон действия масс и правило Вант-Гоффа. Химическое равновесие.

Тема 11. Реакции, идущие без изменения степени окисления.

лекционное занятие (2 часа(ов)):

Реакции, идущие без изменения степени окисления. Реакции обмена, нейтрализации, гидролиза. Степень и константа гидролиза. Условия смещения ионообменных реакций и гидролиза.

лабораторная работа (4 часа(ов)):

ЛБ: Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реагирующих веществ, температуры и катализаторов.

Тема 12. Окислительно-восстановительные реакции.

лекционное занятие (2 часа(ов)):

Окислительно-восстановительные реакции. Окислитель, восстано?ви?тель, подбор коэффициентов. Классификация и направленность окислительно-восстановительных реакций. Стандартные электродные потенциалы как мера активности металлов. Электролиз, его практическое применение. Законы Фарадея.

лабораторная работа (4 часа(ов)):

Решение задач: Концентрация растворов.

Тема 13. Практическая работа. Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реаги-рующих веществ, температуры и катализаторов.

лабораторная работа (4 часа(ов)):

Практическая работа. Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реаги-рующих веществ, температуры и катализаторов.

Тема 14. Упражнения и задачи. Физико-химическая теория растворения. Способы выражения концентрации растворов.

лабораторная работа (4 часа(ов)):

Упражнения и задачи. Физико-химическая теория растворения. Способы выражения концентрации растворов.

Тема 15. Практическая работа. Диссоциация электролитов.

лабораторная работа (4 часа(ов)):

Практическая работа. Диссоциация электролитов.

Тема 16. Упражнения и задачи. Произведение растворимости. Ионное произведение воды и водородный показатель.

лабораторная работа (4 часа(ов)):

Упражнения и задачи. Произведение растворимости. Ионное произведение воды и водородный показатель.

Тема 17. Практическая работа. Гидролиз солей.

лабораторная работа (4 часа(ов)):

Практическая работа. Гидролиз солей.

Тема 18. Упражнения и задачи. Окислительно-восстановительные реакции. Окисли-тельно-восстановительные потенциалы. Законы Фарадея.

лабораторная работа (4 часа(ов)):

Упражнения и задачи. Окислительно-восстановительные реакции.

Окислительно-восстановительные потенциалы. Законы Фарадея.

Тема 19. Практическая работа. Реакции окисления и восстановления.

лабораторная работа (4 часа(ов)):

Практическая работа. Реакции окисления и восстановления.

Тема 20. Контрольная работа по теме: ?Окислительно-восстановительные реакции и электрохимические системы?.

лабораторная работа (2 часа(ов)):

Контрольная работа по теме: ?Окислительно-восстановительные реакции и электрохимические системы?.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Атом как мельчайшая частица химического элемента. Электронная структура атомов.	1	2	Связь общей химии другими естественными науками. Теория химического строения. Квантовая механика.	8	Написание рефератов, работа литературой
3.	Тема 3. Периодический закон и периодическая система элементов Д.И. Менделеева.	1	3	Чистые вещества и примеси. Основные методы получения чистых веществ.Жизнь и научно-педагоги де	6 ческая	Написание микродокладов. Написание рефератов.
4.	Тема 4. Химическая связь.	1	4	Геометрия молекул. Конденсированн и кристаллическое состояния вещества. Эксперименталь методы о	8	Работа литературой, написание конспектов. Решение задач
5.	Тема 5. Метод молекулярных орбиталей.	1	5	Корреляционные диаграммы молекул.	6	Составление корреляционных диаграмм.
6.	Тема 6. Химические системы и их термодинамическая характеристика.	1	6	Применение термодинамичес расчетов в химической технологии.	ких 6	Решение задач

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
7.	Тема 7. Химическая кинетика и её основной закон.	1	7	Биологические катализаторы.	6	Работа литературой и написание конспектов.
8.	Тема 8. Обратимые и необратимые реакции.	1	8	Параллельные, последовательны сопряженные цепные реакции.	ые, 6	Написание микродокладов
9.	Тема 9. Растворы и их свойства.	1	9	Вода, физические и химические свойства. Вода в природе.	8	Написание рефератов
11.	Тема 11. Реакции, идущие без изменения степени окисления.	1	11	Реакции нейтрализации, гидролиза.	6	Написание конспектов
12.	Тема 12. Окислительно-восстано реакции.	вителы	ные12	Составление уравнений окислительно-во- реакций. Упражнения и задачи.	сстановитель	НЫХ Решение задач
13.	Тема 13. Практическая работа. Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реаги-рующих веществ, температуры и катализаторов.	1	13	Понятие о теориях кислот и оснований.	6	Написание конспектов
14.	Тема 14. Упражнения и задачи. Физико-химическая теория растворения. Способы выражения концентрации растворов.	1		Определение молекулярной формулы вещества по температуре замерзания раствора. Упражнения и задачи.	6	Работа литературой. Решение задач
15.	Тема 15. Практическая работа. Диссоциация электролитов.	1	15	Общие свойства растворов.	6	Написание конспектов

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
16	Тема 16. Упражнения и задачи. Произведение 5. Растворимости. Ионное произведение воды и водородный показатель.	1	16	Индикаторы. Буферные системы в живых организмах.	l b	Написание конспектов
17	Тема 17. Практическая 7. работа. Гидролиз солей.	1	17	Биологическая роль гидролиза.	l h	Написание рефератов.
	Итого				96	

5. Образовательные технологии, включая интерактивные формы обучения

В процессе преподавания будут использоваться компьютерные (реализуются в рамках системы "учитель?компьютер?ученик" с помощью обучающих программ различного вида (информационных, тренинговых, контролирующих, развивающих и др.), диалоговые (связаны с созданием коммуникативной среды, расширением пространства сотрудничества на уровне "учитель?ученик", "ученик-ученик", "учитель?автор", "ученик?автор" в ходе постановке и решения учебно-познавательных задач), тренинговые (система деятельности по отработке определенных алгоритмов учебно-познавательных действий и способов решения типовых задач в ходе обучения (тесты и практические упражнения) технологии.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Химия как наука. Структура химии. Основание понятия и теории, стехиометрические законы.

Тема 2. Атом как мельчайшая частица химического элемента. Электронная структура атомов.

Написание рефератов, работа литературой, примерные темы:

1. Учение об атоме. 2. Ученые работавшие в области квантовой механики. 3. Электронная структура атомов.

Тема 3. Периодический закон и периодическая система элементов Д.И. Менделеева.

Написание микродокладов. Написание рефератов., примерные темы:

1. История открытия периодического закона. 2. Современные проблемы периодической системы химических элементов. 3. Открытие новых элементов.

Тема 4. Химическая связь.

Работа литературой, написание конспектов. Решение задач, примерные вопросы:

1. Дативные связи. 2. Силы Ван-дер-Ваальса.

Тема 5. Метод молекулярных орбиталей.

Составление корреляционных диаграмм., примерные вопросы:

1. Составление корреляционных диаграмм молекул азота, оксида азота (II), оксида углерода (II) и т.д.

Тема 6. Химические системы и их термодинамическая характеристика.

Решение задач, примерные вопросы:

1. Решение задач по теме "Химические системы и их термодинамическая характеристика" из учебника Глинка Н.Л. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ.

Тема 7. Химическая кинетика и её основной закон.

Работа литературой и написание конспектов. . примерные вопросы:

1. Закон действия масс. 2. Правило Вант-Гоффа.

Тема 8. Обратимые и необратимые реакции.

Написание микродокладов, примерные вопросы:

1. Обратимые и необратимые реакции.

Тема 9. Растворы и их свойства.

Написание рефератов, примерные темы:

1. Коллигативные свойства растворов.

Тема 10. Электролитическая ионизация.

Тема 11. Реакции, идущие без изменения степени окисления.

Написание конспектов, примерные вопросы:

1. Реакции гидролиза и нейтрализации.

Тема 12. Окислительно-восстановительные реакции.

Решение задач, примерные вопросы:

1 Решение задач по теме "Окислительно-восстановительные реакции" из учебника Глинка Н.Л. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ.

Тема 13. Практическая работа. Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реаги-рующих веществ, температуры и катализаторов.

Написание конспектов, примерные вопросы:

1. Оформление практической работы: Определение изменения скорости химической реакции и смещения химического равновесия в зависимости от концентрации реагирующих веществ, температуры и катализаторов.

Тема 14. Упражнения и задачи. Физико-химическая теория растворения. Способы выражения концентрации растворов.

Работа литературой. Решение задач, примерные вопросы:

1.Решение задач по теме "Способы выражения концентрации растворов. " из учебника Глинка Н.Л. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ.

Тема 15. Практическая работа. Диссоциация электролитов.

Написание конспектов, примерные вопросы:

1. Оформление практической работы: Диссоциация электролитов.

Тема 16. Упражнения и задачи. Произведение растворимости. Ионное произведение воды и водородный показатель.

Написание конспектов, примерные вопросы:

1. Решение задач по теме "Произведение растворимости. Ионное произведение воды и водородный показатель" из учебника Глинка Н.Л. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ.

Тема 17. Практическая работа. Гидролиз солей.

Написание рефератов., примерные темы:

1. Оформление практической работы: Гидролиз солей.

Тема 18. Упражнения и задачи. Окислительно-восстановительные реакции. Окисли-тельно-восстановительные потенциалы. Законы Фарадея.

Тема 19. Практическая работа. Реакции окисления и восстановления.

Тема 20. Контрольная работа по теме: ?Окислительно-восстановительные реакции и электрохимические системы?.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Примерные вопросы для подготовки к экзамену

- 1. Основание понятия и теории, стехиометрические законы. Закон эквивалентов, постоянства состава. Дальтониды и бертоллиды. Закон кратных отношений.
- 2. Атом как мельчайшая частица химического элемента. Модели атома: Томпсона, Резерфорда, Бора, Шредингера. Уравнение де Бройля и принцип неопределенности Гейзенберга.
- 3. Состояние электрона в атоме. Квантовые числа. Структура электронные оболочки и принцип ее заполнения. Электронная конфигурация атомов и ионов.
- 4. Состав атомного ядра. Протонно-нейтронная теория ядра Иваненко. Закон Мозли. Изотопы, изобары. Ядерные реакции. Нуклонный уровень познания явления периодичности.
- 5. Природа химической связи. Основные типы и межмолекулярные взаимодействия. Механизмы образования химической связи (МВС, ММО).
- 6. Классификация окислительно-восстановительных реакций. Влияние среды на протекание окислительно-восстановительных реакций. Составление окислительно-восстановительных реакций.
- 7. Ионная и металлические связи. Типы кристаллических решеток. Водородная и молекулярная связь. Гибридизация атомных орбиталей и геометрия молекул.
- 8. Химическая кинетика и ее основной закон. Зависимость скорости реакции от различных факторов. Закон действия масс и правило Вант-Гоффа. Механизм и глубина химических процессов. Активные молекулы. Типы химических реакций.
- 9. Химические системы и их термодинамическая характеристика. Закон Гесса. Энтальпия, энтропия. 1-ый и 2-ой закон термодинамики. Свободная энергия Гиббса и направленность химических процессов.
- 10. Химическое равновесие и условия его смещения. Принципы Ле Шателье. Константы равновесия, диссоциации и др. Катализ и катализаторы.
- 11. Дисперсные системы и их классификация. Физико-химическая теория растворов. Концентрация растворов. Законы разбавленных растворов.
- 12. Электролитическая ионизация (диссоциация). Степень и константа диссоциации. Активность, коэффициент активности. Кислотно-основная ионизация. Сила кислот и оснований.
- 13. Автопротолиз воды. Водородный показатель. Индикаторы. Диссоциация солей.
- 14. Реакции, идущие без изменения степени окисления. Реакции обмена, нейтрализации, гидролиза. Степень и константа гидролиза.
- 15. Гетерогенные реакции в растворах. Гальванические элементы. Водородный электрод. Стандартные электродные потенциалы как мера активности металлов. Электролиз, его практическое применение. Законы Фарадея.
- 16. Свойства электронных конфигураций у элементов главной и побочной подгрупп. Элементы s-, p-, d- и f-семейства.
- 17. Свойства изолированных атомов: радиусы атомов, энергии ионизации, электроотрицательность, сродство к электрону.
- 18. Свойства ковалентной связи: насыщаемость, направленность, поляризуемость. Ковалентность элементов I, II, III периодов.
- 19. Метод молекулярных орбиталей. Виды и принципы заполнения молекулярных орбиталей. Энергетические диаграммы и электронные формулы.
- 20. Классификация химических реакций. Степень и константа гидролиза. Полный (необратимый) гидролиз. Условия смещения гидролиза.

7.1. Основная литература:

1. Глинка, Николай Леонидович. Общая химия: учебное пособие [для студентов нехимических специальностей высших учебных заведений] / Н. Л. Глинка.?Изд. стер..?Москва: КноРус, 2013.?746, [2] с.: ил.; 22.?Библиогр.: с. 725-726.?Имен. указ.: с. 727-728.?Предм. указ.: с. 729-746.?ISBN 978-5-406-02934-3((в пер.)), 3000.

- 2. Глинка, Николай Леонидович. Задачи и упражнения по общей химии: учебное пособие / Н. Л. Глинка.?Издание стереотипное.?Москва: КноРус, 2011.?240 с.: ил.; 22 см..?ISBN 978-5-406-00810-2((в пер.)), 3000 .? <URL:http://z3950.ksu.ru/bcover/0000801485 con.pdf>.
- 3. Глинка, Николай Леонидович. Общая химия: [учебное пособие для студентов нехимических специальностей высших учебных заведений и средних профессиональных образовательных учреждений и старших классов средней школы] / Н. Л. Глинка; под ред. д.фармакол.н., д.п.н., проф. В. А. Попкова, д.х.н., проф. А. В. Бабкова.?Москва: КноРус, 2011.?746 с.: ил.; 21.?Библиогр.: с. 886.?Имен. и предм. указ.: с. 887-898.?ISBN 978-5-406-01437-0((в пер.)), 3000 .? <URL:http://z3950.ksu.ru/bcover/0000807520_con.pdf>.

7.2. Дополнительная литература:

- 1. Степин Б.Д., Цветков А.А. Неорганическая химия. М.: Высшая школа, 1994.
- 2. Карапетьянц М.Х. Введение в теорию химических процессов. М.: Высшая школа, 1975.
- 3. Практикум по неорганической химии. Под ред. А.В.Бабич. -М.: Просвещение, 1991.
- 4. Некрасов Б.В. Основы общей химии. М.: Химия, 1973. Т. 1 М.: Мир,1991, ч. 1,2.
- 5. Угай Я.А. Общая и неорганическая химия. М.: Высшая школа, 2000, 2001 и др. издания.

7.3. Интернет-ресурсы:

интернет-ресурс - http://www.xumuk.ru/

интернет-ресурс - http://quant.distant.ru/konspekt atom.htm

интернет-ресурс - http://quant.distant.ru/files/pdf/MOL_razd.pdf

интернет-ресурс - http://quant.distant.ru/files/pdf/chbond.pdf

интернет-ресурс - http://www.chem.msu.ru/rus/teaching/kovba-pupyshev/welcome.html

учебник - http://z3950.ksu.ru/bcover/0000801485_con.pdf

учебник - http://z3950.ksu.ru/bcover/0000807520 con.pdf

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Общая химия" предполагает использование следующего материально-технического обеспечения:

Имеется специализированная лаборатория лекционная аудитория. Лабораторное оборудование и химическая посуда. Ноутбук. Мультимедийный проектор. Графопроектор. Библиотечный фонд.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 050100.62 "Педагогическое образование" и профилю подготовки Биология и химия.

Автор(ы)	:	
Низамов	И.Д.	
""	201 г.	
Рецензен	нт(ы):	
Гильмань	шина С.И	
" "	201 г.	