МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Высшая школа информационных технологий и информационных систем

УТВЕРЖДАЮ

Про	оректор										
ПО	по образовательной деятельности КФУ										
Пр	оф. Мин	зарипов	Р.Г.								
"	"		20	Г.							

Программа дисциплины

Линейная алгебра Б2.Б.1.2

П							
Направление подготовки: <u>230700.62 - Прикладная информатика</u>							
Профиль подготовки: Прикладная информатика в экономике							
Квалификация выпускника: <u>бакалавр</u>							
Форма обучения: <u>очное</u>							
Язык обучения: <u>русский</u>							
Автор(ы):							
Лаврентьева Е.Е.							
Рецензент(ы):							
Гарипов И.Б., Зиннатуллина Э.Д.							
СОГЛАСОВАНО:							
Заведующий(ая) кафедрой: Галимянов А. Ф.							
Протокол заседания кафедры No от "" 201г							
Учебно-методическая комиссия Высшей школы информационных технологий и информационных систем:							
Протокол заседания УМК No от ""201г							
Регистрационный No							
Казань							
2014							

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Лаврентьева Е.Е. Кафедра информационных систем отделение фундаментальной информатики и информационных технологий, Elena.Lavrenteva@kpfu.ru

1. Цели освоения дисциплины

Цель курса - обеспечить некоторый объем базовой математической подготовки, которая является одной из основных составляющих профессиональной подготовки студентов данного направления обучения; сформировать у студентов основные понятия теории арифметических векторных пространств, теории матриц и определителей, а также теории систем линейных уравнений и неравенств; рассмотреть алгебраическую систему комплексных чисел в качестве некоторого вспомогательного материала для формирования общей математической грамотности студентов.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б2.Б.1 Общепрофессиональный" основной образовательной программы 230700.62 Прикладная информатика и относится к базовой (общепрофессиональной) части. Осваивается на 1 курсе, 1, 2 семестры.

"Математика: линейная алгебра" входит в состав математического и естественнонаучного цикла (Б.2.Б.2), читается на 1 курсе в 1 и 2 семестрах.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-17 (профессиональные компетенции)	способен применять методы анализа прикладной области на концептуальном, логическом, математическом и алгоритмическом уровнях
ПК-2 (профессиональные компетенции)	способен при решении профессиональных задач анализировать социально-экономические проблемы и процессы с применением методов системного анализа и математического моделирования
ПК-21 (профессиональные компетенции)	способен применять системный подход и математические методы в формализации решения прикладных задач
ПК-3 (профессиональные компетенции)	способен использовать основные законы естественнонаучных дисциплин в профессиональной деятельности и эксплуатировать современное электронное оборудование и информационно-коммуникационные технологии в соответствии с целями образовательной программы бакалавра

В результате освоения дисциплины студент:

- 1. должен знать:
- ? понятие комплексного числа, правил действий над комплексными числами;
- ? основы теории арифметических векторных пространств, понятие линейной зависимости и независимости системы векторов, понятие базиса и ранга системы векторов и векторного пространства;
- ? основы теории матриц, виды матриц, правила действий над ними и их свойства;
- ? понятие ранга матрицы, способы его вычисления, критерий обратимости матриц;

- ? понятие определителя, основные свойства определителей, способы их вычисления;
- ? понятие систем линейных уравнений, их виды, методы решения;
- ? понятие систем линейных неравенств, методы их решения;
- ? понятие и свойства линейного пространства, линейной зависимости и независимости системы векторов;
- ? понятие базиса и размерности линейного пространства.
- ? понятие изоморфизма линейных пространств;
- ? понятие суммы и пересечения подпространств;
- ? понятие скалярного произведения векторов;
- ? понятие евклидового пространства, ортогонального и ортонормального базисов;
- ? определение линейного оператора и его свойства;
- ? понятие образа и ранга, ядра и дефекта линейного оператора;
- ? определение собственного вектора и собственных значений линейного оператора.
- 2. должен уметь:
- ? выполнять действия с комплексными числами;
- ? выполнять действия над векторами;
- ? устанавливать линейную зависимость и независимость системы арифметитческих векторов;
- ? находить базис и ранг системы векторов;
- ? вычислять определители второго и третьего порядков;
- ? разложить определители по элементам строки или столбца;
- ? выполнять правильно действия с матрицами;
- ? исследовать матрицу на обратимость и необратимость;
- ? вычислять обратную матрицу;
- ? исследовать СЛУ на совместность и определенность;
- ? решать СЛУ по правилу Крамера, методом Гаусса и в матричной форме, записывать общее и частное решения СЛУ;
- ? находить фундаментальный набор решений системы линейных однородных уравнений и выражать через него общее решение;
- ? изображать множество решений систем линейных неравенств графически; понятие и свойства линейного пространства, линейной зависимости и независимости системы векторов;
- ? находить базис и размерность линейного пространства.
- ? находить сумму и пересечение подпространств;
- ? вычислять скалярное произведение векторов;
- ? вычислять ортогональный и ортонормальный базисы;
- ? находить образ и ранг, ядро и дефект линейного оператора;
- ? находить собственные вектора и собственные значения линейного оператора;
- ? приводить матрицу линейного оператора к диагональному виду.
- 3. должен владеть:
- ? основными теоретическими понятиями в области линейной алгебры;
- ? навыками работы с комплексными числами;
- ? навыками вычисления ранга и нахождения базиса системы арифметических векторов;
- ? навыками вычисления определителей 2, 3 и п-ого порядка;
- ? навыками нахождения обратной матрицы в случае обратимости исходной;
- ? навыками нахождения решения СЛУ правилом Крамера, методом Гаусса и в матричной форме;

- ? навыками нахождения фундаментального набора решений системы линейных однородных уравнений и выражения через него общего решения;
- ? навыками нахождения множества решений систем линейных неравенств графически;
- ? навыками нахождения базиса и размерности линейного пространства.
- ? навыками нахождения суммы и пересечения подпространств;
- ? навыками вычисления скалярного произведения векторов;
- ? навыками вычисления ортогонального и ортонормального базисов;
- ? навыками нахождения образа и ранга, ядра и дефекта линейного оператора;
- ? навыками нахождения собственного вектора и собственных значений линейного оператора.
- ? навыками приведения матрицы линейного оператора к диагональному виду.
- 4. должен демонстрировать способность и готовность:

осуществлять дальнейшее изучение высшей математики, вырабатывать навыки профессиональной деятельности, опирающиеся на применение математических методов в формирования решения прикладных задач.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 9 зачетных(ые) единиц(ы) 324 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре; зачет и экзамен во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	лабораторные работы	
1.	Тема 1. Комплексные числа.	1	3,5	6	0	8	
2.	Тема 2. Арифметическое п-мерное векторное пространство.	1	5,5	12	0	10	
3.	Тема 3. Теория матриц и определителей.	1	9	18	0	18	
4.	Тема 4. Системы линейных уравнений и системы линейных неравенств.	2	7	14	0	14	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
5.	Тема 5. Линейные пространства.	2	5	10	0	10	
6.	Тема 6. Линейные операторы.	2	6	12	0	12	
[.	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Тема . Итоговая форма контроля	2		0	0	0	экзамен зачет
	Итого			72	0	72	

4.2 Содержание дисциплины

Тема 1. Комплексные числа.

лекционное занятие (6 часа(ов)):

1. Множество комплексных чисел. Поле комплексных чисел. Мнимая единица. Алгебраическая форма записи комплексного числа. Действия над комплексными числами в алгебраической форме. Сопряженные комплексные числа. 2. Модуль и аргумент комплексного числа. Тригонометрическая форма записи комплексного числа. Действия над комплексными числами в тригонометрической форме. Возведение в степень комплексных чисел. 3. Формула Муавра. Извлечение корня из комплексных чисел. Корни из единицы. Первообразные корни и их свойства. Решение двучленных уравнений.

лабораторная работа (8 часа(ов)):

1. Множество комплексных чисел. Поле комплексных чисел. Мнимая единица. Алгебраическая форма записи комплексного числа. Действия над комплексными числами в алгебраической форме. Сопряженные комплексные числа. Модуль и аргумент комплексного числа. Тригонометрическая форма записи комплексного числа. Действия над комплексными числами в тригонометрической форме. Возведение в степень комплексных чисел. 2. Формула Муавра. Извлечение корня из комплексных чисел. Корни из единицы. Первообразные корни и их свойства. Решение двучленных уравнений. 3-4. Консультационное занятие со студентами. Прием индивидуальных заданий студентов, выполнение контрольной работы.

Тема 2. Арифметическое n-мерное векторное пространство. лекционное занятие (12 часа(ов)):

1. Арифметический п-мерный вектор. Арифметическое п-мерное векторное пространство. Действия над векторами и их свойства. 2-3. Линейная зависимость и независимость системы векторов. Линейная независимость ступенчатой системы векторов. 4. Признаки линейной зависимости секторов. 5. Базис и ранг системы векторов. Эквивалентные системы. 6. Элементарные преобразования системы векторов. Теорема об элементарных преобразованиях.

лабораторная работа (10 часа(ов)):

1. Арифметический п-мерный вектор. Арифметическое п-мерное векторное пространство. Действия над векторами и их свойства. Линейная зависимость и независимость системы векторов. Линейная независимость ступенчатой системы векторов. Признаки линейной зависимости секторов. 2. Базис и ранг системы векторов. Эквивалентные системы. 3. Элементарные преобразования системы векторов. Теорема об элементарных преобразованиях. 4-5. Консультационное занятие со студентами. Прием индивидуальных заданий студентов, выполнение контрольной работы.

Тема 3. Теория матриц и определителей.

лекционное занятие (18 часа(ов)):

- 1. Подстановки п-ой степени. Инверсия и транспозиция подстановок, их четность или нечетность. Квадратная матрица и ее определитель. 2. Основные свойства определителей. Определители 2-ого и 3-его порядков. 3. Миноры и алгебраические дополнения элементов определителя. Разложение определителя по элементам строки (столбца). 4. Матрицы, основные понятия. Элементарные преобразования. Ступенчатая матрица. Ранг матрицы и способ его вычисления. 5. Типы матриц. Действия над матрицами и их свойства. Элементарные матрицы. Свойства элементарных матриц. 6. Вырожденные и невырожденные матрицы. Критерий вырожденности матрицы. 7. Обратная и обратимая матрицы. Критерий обратимости матрицы. 8. Вычисление обратной матрицы с помощью элементарных преобразований и с помощью алгебраических дополнений. 9. Матричные уравнения. лабораторная работа (18 часа(ов)):
- 1. Подстановки п-ой степени. Инверсия и транспозиция подстановок, их четность или нечетность. Квадратная матрица и ее определитель. Основные свойства определителей. Определители 2-ого и 3-его порядков. 2. Миноры и алгебраические дополнения элементов определителя. Разложение определителя по элементам строки (столбца). 3. Матрицы, основные понятия. Элементарные преобразования. Ступенчатая матрица. Ранг матрицы и способ его вычисления. Типы матриц. Действия над матрицами и их свойства. Элементарные матрицы. Свойства элементарных матриц. Вырожденные и невырожденные матрицы. Критерий вырожденности матрицы. 4-5. Обратная и обратимая матрицы. Критерий обратимости матрицы. Вычисление обратной матрицы с помощью элементарных преобразований и с помощью алгебраических дополнений. 6. Матричные уравнения. 7-9. Консультационные занятия со студентами. Прием индивидуальных заданий студентов, выполнение контрольной работы.

Тема 4. Системы линейных уравнений и системы линейных неравенств.

лекционное занятие (14 часа(ов)):

лабораторная работа (14 часа(ов)):

Тема 5. Линейные пространства.

лекционное занятие (10 часа(ов)):

лабораторная работа (10 часа(ов)):

Тема 6. Линейные операторы.

лекционное занятие (12 часа(ов)):

лабораторная работа (12 часа(ов)):

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Комплексные числа.	1	3,5	Выполнение индивидуальных задач для самостоятельног решения, выполнение контрольной работы	o ₁₄	Проверка задач и контрольной работы

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Арифметическое п-мерное векторное пространство.	1	5,5	Выполнение индивидуальных задач для самостоятельног решения, выполнение контрольной работы	22	Проверка задач и контрольной работы
3.	Тема 3. Теория матриц и определителей.	1	9	Выполнение индивидуальных задач для самостоятельног решения, выполнение контрольной работы	36	Проверка задач и контрольной работы
4.	Тема 4. Системы линейных уравнений и системы линейных неравенств.	2	7	Выполнение индивидуальных задач для самостоятельног решения, выполнение контрольной работы		Проверка задач и контрольной работы
5.	Тема 5. Линейные пространства.	2	5	Выполнение индивидуальных задач для самостоятельног решения, выполнение контрольной работы	o ₂₀	Проверка задач и контрольной работы
6.	Тема 6. Линейные операторы.	2	6	Выполнение индивидуальных задач для самостоятельног решения, выполнение контрольной работы	0	Проверка задач и контрольной работы
	Итого				144	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных занятий, лабораторных занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебниках. Список литературы разделен на две категории: необходимый для сдачи зачета и дополнительная литература.

На лабораторных занятиях студенты расширяют свои знания, полученные на лекциях, закрепляют изученный материал при выполнении конкретных задач, отрабатывают навыки решения основных задач из курса линейной алгебры.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Комплексные числа.

Проверка задач и контрольной работы, примерные вопросы:

Задачи, рекомендованные студентам для самостоятельной работы охватывают необходимый объем знаний по указанной теме, раскрывают теоретическое содержание и способствуют отработке навыков решения; задачи из контрольной работы позволяют оценить уровень усвоения студентами данного объема знаний

Тема 2. Арифметическое п-мерное векторное пространство.

Проверка задач и контрольной работы, примерные вопросы:

Задачи, рекомендованные студентам для самостоятельной работы охватывают необходимый объем знаний по указанной теме, раскрывают теоретическое содержание и способствуют отработке навыков решения; задачи из контрольной работы позволяют оценить уровень усвоения студентами данного объема знаний

Тема 3. Теория матриц и определителей.

Проверка задач и контрольной работы, примерные вопросы:

Задачи, рекомендованные студентам для самостоятельной работы охватывают необходимый объем знаний по указанной теме, раскрывают теоретическое содержание и способствуют отработке навыков решения; задачи из контрольной работы позволяют оценить уровень усвоения студентами данного объема знаний

Тема 4. Системы линейных уравнений и системы линейных неравенств.

Проверка задач и контрольной работы, примерные вопросы:

Задачи, рекомендованные студентам для самостоятельной работы охватывают необходимый объем знаний по указанной теме, раскрывают теоретическое содержание и способствуют отработке навыков решения; задачи из контрольной работы позволяют оценить уровень усвоения студентами данного объема знаний

Тема 5. Линейные пространства.

Проверка задач и контрольной работы, примерные вопросы:

Задачи, рекомендованные студентам для самостоятельной работы охватывают необходимый объем знаний по указанной теме, раскрывают теоретическое содержание и способствуют отработке навыков решения; задачи из контрольной работы позволяют оценить уровень усвоения студентами данного объема знаний

Тема 6. Линейные операторы.

Проверка задач и контрольной работы, примерные вопросы:

Задачи, рекомендованные студентам для самостоятельной работы охватывают необходимый объем знаний по указанной теме, раскрывают теоретическое содержание и способствуют отработке навыков решения; задачи из контрольной работы позволяют оценить уровень усвоения студентами данного объема знаний

Тема. Итоговая форма контроля

Тема. Итоговая форма контроля

Примерные вопросы к зачету и экзамену:

По данной дисциплине предусмотрено проведение зачета в 1 семестре, зачета и экзамена во 2 семестре. Примерные вопросы для зачетов и экзамена см. далее. Самостоятельная работа предполагает изучение и конспектирование рекомендуемой литературы, выполнение домашних работ, заданий преподавателя, подготовку к коллоквиумам. В результате самостоятельной работы формируются навыки студентов по изучению основ линейной алгебры.

Билет 1

- 1. Общее решение неоднородной системы линейных уравнений.
- 2. Формула Крамера.

Билет 2

- 1. Билинейные и кососимметрические функции строк матрицы, их свойства.
- 2. Нахождение наибольшего общего делителя двух многочленов.

Билет 3

- 1. Определители, простейшие свойства.
- 2. Фундаментальная система решений однородной системы линейных уравнений.

Билет 4

- 1. Линейные операторы арифметического линейного пространства, их матрицы
- 2. Эквивалентные формулы вычисления значений определителя

Билет 5

- 1. Транспонированные матрицы и их определители..
- 2. Теорема о разложении правильной рациональной дроби в сумму простейших. Единственность.

Билет 6

- 1. Необходимое и достаточное условие существования обратного оператора, его линейность.
- 2. Теорема Виета. Кратные корни.

Билет 7

- 1. Линейные операторы. Задание оператора матрицей. Нахождение по матрице линейного оператора.
- 2. Кольцо Симметрических многочленов. Основная теорема о симметрических многочленах.

Билет 8

- 1. Кольцо многочленов от одной переменной. Многочлены от многих переменных.
- 2. Поле комплексных чисел. Тригонометрическая форма.

Билет 9

- 1. Алгоритм деления с остатком. Нахождение наибольшего общего делителя.
- 2. Корни из единицы. Первообразные корни.

Билет 10

- 1. Построение поля отношений целостного кольца. Поле рациональных дробей. Представление рациональной дроби в виде суммы многочлена и правильной дроби.
- 2. Ранги матрицы по строкам и столбцам, их совпадение...

Билет 11

- 1. Разложение правильной рациональной дроби в сумму простейших дробей.
- 2. Вычисление ранга матрицы методом окаймляющих миноров.

Билет 12

- 1. Корни многочленов. Общие свойства корней.
- 2. Теорема Кронекера-Капелли.

Билет 13

- 1. Дифференцирования в кольце многочленов. Кратные корни.
- 2. Формула разложения определителя по элементам некоторой строки.

Билет 14

- 1. Критерий невырожденности матрицы.
- 2. Формулы Виета.

Билет 14

- 1. Ранг произведения матриц.
- 2. Алгебраические структуры: группа, кольцо, поле. Примеры.

7.1. Основная литература:

- 1.Карчевский Е.М., Карчевский М.М. Лекции по геометрии и алгебре: Учебное пособие. Казань: К(П)ФУ, 2011. URL:http://libweb.ksu.ru/ebooks/09 64 ds011.pdf>.
- 2. Ильин В. А., Позняк Э.Г. Линейная алгебра. 6-е изд., стер. ? М.: ФИЗМАТЛИТ, 2010. 278 с.
- 3.Карчевский, Евгений Михайлович. Линейная алгебра и аналитическая геометрия: учебное пособие / Е. М. Карчевский, М. М. Карчевский.?Казань: Казанский университет, 2011.?269 с.

7.2. Дополнительная литература:

1.Беклемишев Д.В.

Курс аналитической геометрии и линейной алгебры. - М.: Физматлит, 2008. - 307 с. http://e.lanbook.com/books/element.php?pl1 id=48199

2.Ильин В. А., Позняк Э.Г. Линейная алгебра: учебник. - 6-е изд., стер. - М.: ФИЗМАТЛИТ, 2008. - 280 с.

http://e.lanbook.com/books/element.php?pl1 id=2178

7.3. Интернет-ресурсы:

Сайт библиотеки КПФУ - http://libress.kpfu.ru/w pad.dat

Википедия - http://ru.wikipedia.org

Электронный дом книги - www.dom-eknig.ru

Электронный каталог библиотеки КПФУ - http://portal.kpfu.ru/main_page?p_sub=8474

Электронный магазин книг - www.ozon.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Линейная алгебра" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Лекционные и лабораторные занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом (маркером).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 230700.62 "Прикладная информатика" и профилю подготовки Прикладная информатика в экономике .

Автор(ы):		
Лаврентье	ва Е.Е	
"_"_	201 г.	
Рецензен [.]	·(ы):	
Гарипов И	І.Б	
Зиннатулл	ина Э.Д.	
"_"	201 г.	