МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

<u>Непрерывные математические модели</u> M2.B.2

Направление подготовки: <u>010300.68 - Фундаментальная информатика и информационные</u>
<u>технологии</u>
Профиль подготовки: <u>Математические основы и программное обеспечение информационной безопасности и защиты информации</u>
Квалификация выпускника: <u>магистр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
Лапин А.В.
Рецензент(ы):
Турилова Е.А.

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Турилова Е. А. Протокол заседания кафедры No от "	
	вычислительной математики и информационных
Протокол заседания УМК No от "	_" 201г
Регистрационный No 959414	
	Vacatu

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Лапин А.В. кафедра математической статистики отделение прикладной математики и информатики , Alexandr.Lapin@kpfu.ru

1. Цели освоения дисциплины

Рассматриваются современные численные методы решения основных задач линейной алгебры с разреженными матрицами большой размерности, а также методы решения краевых задач для стационарных и нестационарных многомерных дифференциальных уравнений.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.2 Профессиональный" основной образовательной программы 010300.68 Фундаментальная информатика и информационные технологии и относится к вариативной части. Осваивается на 1 курсе, 1 семестр.

"Непрерывные математические модели" входит в состав общенаучных дисциплин, раздел M1.B.2. Читается на 1 курсе в 1 семестре.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-20 (профессиональные компетенции)	способность разрабатывать аналитические обзоры состояния области информационных технологий по направлениям профильной подготовки
ПК-21 (профессиональные компетенции)	способность выполнять работу экспертов в ведомственных, отраслевых или государственных экспертных группах по экспертизе проектов, тематика которых соответствует профилю подготовки магистра информационных технологий
ПК-22 (профессиональные компетенции)	способность оказывать консалтинговые услуги по тематике, соответствующей профилю подготовки магистра
ПК-23 (профессиональные компетенции)	способность работать в международных проектах по разработке открытых спецификаций новых информационных технологий, реализуемых международными профессиональными организациями и консорциумами на основе принципа консенсуса
ПК-24 (профессиональные компетенции)	способность участвовать в деятельности профессиональных сетевых сообществ по конкретным направлениям

В результате освоения дисциплины студент:

- 1. должен знать:
- итерационные методы решения систем нелинейных уравнений и задач оптимизации большой размерности.
- 2. должен уметь:

- программно реализовывать основные алгоритмы для систем нелинейных уравнений и задач оптимизации большой размерности.
- 3. должен владеть:
- базовыми знаниями в области аппроксимации непрерывных моделей дискретными.
- 4. должен демонстрировать способность и готовность:
- - понимать круг прикладных задач, математическими моделями которых выступают уравнения в частных производных и задачи оптимизации.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Методы математического моделирования. Примеры линейных краевых задач для уравнений в частных производных, моделирующих процессы механики и физики.	1		2	0	0	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах Практические	Текущие формы контроля	
	Тема 2. Примеры			Лекции	занятия	работы	
2.	нелинейных краевых задач для уравнений в частных производных, в том числе, задач с ограничениями, математическими моделями которых являются задачи на минимум функционалов энергии или вариационные неравенства.	1		2	0	0	
3.	Тема 3. Задачи оптимального управления правой частью и граничными условиями линейных эллиптических уравнений. Задачи с ограничениями на управление и состояние системы.	1		2	0	0	
4.	Тема 4. Дискретные модели, построенные на основе конечномерных аппроксимаций непрерывных моделей. Методы конечных разностей, конечных элементов и конечных объемов для линейных эллиптических задач. Основные свойства матриц дискретных моделей.	1		0	0	6	
רו	Тема 5. Сеточные аппроксимации нелинейных краевых задач, вариационных неравенств, задач оптимального управления. Основные свойства матриц и конечномерных операторов. Теоремы существования решений.	1		0	0	2	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и часы аудиторной работы, их трудоемкость (в часах)		Текущие формы контроля
	Тема 6. Краткий обзор			Лекции	занятия	работы	
	методов решения систем линейных алгебраических уравнений с большими разреженными матрицами. Итерационные методы решения больших систем нелинейных уравнений метод Ньютона, его обобщения и модификации.	1		2	0	0	
7.	Тема 7. Решение задач оптимизации и конечномерных вариационных неравенств большой размерности: итерационные методы для задач с положительно определенными матрицами	1		2	0	2	отчет
8.	Тема 8. Решение задач оптимизации и конечномерных вариационных неравенств: обсуждение вопросов эффективной реализуемости методов, контроля точности вычислений и критериев окончания вычислительного процесса.	1		2	0	2	
9.	Тема 9. Итерационные методы для задач оптимизации и конечномерных вариационных неравенств большой размерности: с седловыми матрицами.	1		2	0	2	отчет
	Тема . Итоговая форма контроля	1		0	0	0	экзамен

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	·
	Итого			14	0	14	

4.2 Содержание дисциплины

Тема 1. Методы математического моделирования. Примеры линейных краевых задач для уравнений в частных производных, моделирующих процессы механики и физики. *пекционное занятие (2 часа(ов)):*

Примеры линейных краевых задач для уравнений в частных производных, моделирующих процессы механики и физики.

Тема 2. Примеры нелинейных краевых задач для уравнений в частных производных, в том числе, задач с ограничениями, математическими моделями которых являются задачи на минимум функционалов энергии или вариационные неравенства.

лекционное занятие (2 часа(ов)):

Примеры нелинейных краевых задач для уравнений в частных производных, в том числе, задач с ограничениями, математическими моделями которых являются задачи на минимум функционалов энергии или вариационные неравенства.

Тема 3. Задачи оптимального управления правой частью и граничными условиями линейных эллиптических уравнений. Задачи с ограничениями на управление и состояние системы.

лекционное занятие (2 часа(ов)):

Задачи оптимального управления правой частью и граничными условиями линейных эллиптических уравнений. Задачи с ограничениями на управление и состояние системы.

Тема 4. Дискретные модели, построенные на основе конечномерных аппроксимаций непрерывных моделей. Методы конечных разностей, конечных элементов и конечных объемов для линейных эллиптических задач. Основные свойства матриц дискретных моделей.

лабораторная работа (6 часа(ов)):

Построение дискретных моделей на основе конечномерных аппроксимаций непрерывных моделей: методы конечных разностей, конечных элементов и конечных объемов для линейных эллиптических задач. Основные свойства матриц дискретных моделей.

Тема 5. Сеточные аппроксимации нелинейных краевых задач, вариационных неравенств, задач оптимального управления. Основные свойства матриц и конечномерных операторов. Теоремы существования решений.

лабораторная работа (2 часа(ов)):

Сеточные аппроксимации нелинейных краевых задач, вариационных неравенств, задач оптимального управления. Основные свойства матриц и конечномерных операторов. Теоремы существования решений.

Тема 6. Краткий обзор методов решения систем линейных алгебраических уравнений с большими разреженными матрицами. Итерационные методы решения больших систем нелинейных уравнений -- метод Ньютона, его обобщения и модификации.

лекционное занятие (2 часа(ов)):

Краткий обзор методов решения систем линейных алгебраических уравнений с большими разреженными матрицами. Итерационные методы решения больших систем нелинейных уравнений -- метод Ньютона, его обобщения и модификации.

Тема 7. Решение задач оптимизации и конечномерных вариационных неравенств большой размерности: итерационные методы для задач с положительно определенными матрицами

лекционное занятие (2 часа(ов)):

Теоретические основы методов решения задач оптимизации и конечномерных вариационных неравенств большой размерности: итерационные методы для задач с положительно определенными матрицами.

лабораторная работа (2 часа(ов)):

Алгоритмы и программы, реализующие итерационные методы для задач с положительно определенными матрицами.

Тема 8. Решение задач оптимизации и конечномерных вариационных неравенств: обсуждение вопросов эффективной реализуемости методов, контроля точности вычислений и критериев окончания вычислительного процесса.

лекционное занятие (2 часа(ов)):

Теоретические основы методов решения задач оптимизации и конечномерных вариационных неравенств: обсуждение вопросов эффективной реализуемости методов, контроля точности вычислений и критериев окончания вычислительного процесса.

лабораторная работа (2 часа(ов)):

Алгоритмы и программы, реализующие итерационные методы для задач оптимизации и конечномерных вариационных неравенств.

Тема 9. Итерационные методы для задач оптимизации и конечномерных вариационных неравенств большой размерности: с седловыми матрицами.

лекционное занятие (2 часа(ов)):

Итерационные методы для задач оптимизации и конечномерных вариационных неравенств большой размерности с седловыми матрицами: построение методов, исследование сходимости.

лабораторная работа (2 часа(ов)):

Алгоритмы и программы, реализующие итерационные методы для задач оптимизации и конечномерных вариационных неравенств большой размерности с седловыми матрицами

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
7.	Тема 7. Решение задач оптимизации и конечномерных вариационных неравенств большой размерности: итерационные методы для задач с положительно определенными матрицами	1		подготовка к отчету	31	отчет
9.	Тема 9. Итерационные методы для задач оптимизации и конечномерных вариационных неравенств большой размерности: с седловыми матрицами.	1		подготовка к отчету	31	отчет
	Итого				62	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных и практических занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. Причем конспект лекций, который остается у студента в результате прослушивания лекции не может заменить учебник. Его цель - формулировка основных утверждений и определений. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебнике. Список литературы разделен на две категории: необходимый для сдачи зачета минимум и дополнительная литература.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для более глубокого понимания разделов дисциплины "Непрерывные математические модели" на основе решения задач и упражнений, иллюстрирующих доказываемые теоретические положения, а также развитие абстрактного мышления и способности самостоятельно доказывать частные утверждения.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы. Кроме того, самостоятельная работа включает подготовку к зачету. При подготовке к сдаче зачета весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к зачету, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда всегда будет резерв времени.

- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- **Тема 1. Методы математического моделирования. Примеры линейных краевых задач для уравнений в частных производных, моделирующих процессы механики и физики.**
- Тема 2. Примеры нелинейных краевых задач для уравнений в частных производных, в том числе, задач с ограничениями, математическими моделями которых являются задачи на минимум функционалов энергии или вариационные неравенства.
- Тема 3. Задачи оптимального управления правой частью и граничными условиями линейных эллиптических уравнений. Задачи с ограничениями на управление и состояние системы.
- Тема 4. Дискретные модели, построенные на основе конечномерных аппроксимаций непрерывных моделей. Методы конечных разностей, конечных элементов и конечных объемов для линейных эллиптических задач. Основные свойства матриц дискретных моделей.
- Тема 5. Сеточные аппроксимации нелинейных краевых задач, вариационных неравенств, задач оптимального управления. Основные свойства матриц и конечномерных операторов. Теоремы существования решений.
- Тема 6. Краткий обзор методов решения систем линейных алгебраических уравнений с большими разреженными матрицами. Итерационные методы решения больших систем нелинейных уравнений -- метод Ньютона, его обобщения и модификации.
- Тема 7. Решение задач оптимизации и конечномерных вариационных неравенств большой размерности: итерационные методы для задач с положительно определенными матрицами

отчет, примерные вопросы:

Постановка задачи, аппроксимация. Описание итерационного метода. Программа на ЭВМ, анализ результатов расчетов.

Тема 8. Решение задач оптимизации и конечномерных вариационных неравенств: обсуждение вопросов эффективной реализуемости методов, контроля точности вычислений и критериев окончания вычислительного процесса.

Тема 9. Итерационные методы для задач оптимизации и конечномерных вариационных неравенств большой размерности: с седловыми матрицами.

отчет, примерные вопросы:

Постановка задачи, аппроксимация. Описание итерационного метода. Программа на ЭВМ, анализ результатов расчетов.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

По данной дисциплине предусмотрено проведение зачета.

Материал, включенный в зачетные вопросы по курсу "Непрерывные математические модели" (Ссылки на пункты из курса лекций. Остальной материал читать для понимания текста).

- 1. Теорема об эквивалентности задачи минимизации, вариационного неравенства и включения (Теорема 4.1).
- 2. Теорема существования решения у вариационного неравенства с положительно определенной матрицей (Теорема 4.2).
- 3. Задача о препятствии; ее аппроксимация по методу конечных элементов; . алгебраическая формулировка, запись в виде включения (Пункт 5.1, пример 1; Пункт 5.2.1).
- 4. Методы релаксации для вариационного неравенства с положительно определенной матрицей (Пункт 6.2).
- 5. Конечно-разностная аппроксимация одномерной задачи с ограничением на производную от решения (Пункт 7.2.1).
- 6. Эквивалентные формулировки седловой задачи (7.11) (Пункт 7.3, стр. 70-72).
- 7. Комбинированный метод блочной релаксации-Узавы (Пункт 8.2).

7.1. Основная литература:

Математическое и компьютерное моделирование, Тарасевич, Юрий Юрьевич, 2012г.

2. Дуреева, Н. С. Роль моделей в теории познания [Электронный ресурс]: Учеб. пособие / Н. С. Дуреева, Р. Н. Галиахметов. - Красноярск : Сиб. федер. ун-т, 2011. - 192 с. . - Режим доступа: http://www.znanium.com/bookread.php?book=443234

7.2. Дополнительная литература:

- 1. Сложность. Математическое моделирование. Гуманитарный анализ: исследование исторических, военных, социально-экономических и политических процессов / Н. В. Белотелов, Ю. И. Бродский, Ю. Н. Павловский; предисл. Г. Г. Малинецкого .? Москва: [ЛИБРОКОМ, 2009] .? 317 с.
- 2. Шарифуллин, Вилен Насибович. Математическое моделирование в технике и экономике : лабораторный практикум по циклу дисциплин направлений подготовки "Прикладная математика" и "Информатика и вычислительная техника" / В. Н. Шарифуллин ; М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. проф. образования "Казан. гос. энергет. ун-т" .? Изд. 2-е, доп. и перераб. ? Казань : [Казанский государственный энергетический университет], 2012 .? 127 с.
- 3. Якимов, И. М. Компьютерные технологии моделирования и обработки экспериментальных данных: учебное пособие / И. М. Якимов, В. В. Мокшин.?Казань: [Изд-во Казанского государственного технического университета], 2012.?121 с.

7.3. Интернет-ресурсы:

Интернет-портал образовательных ресурсов по ИТ - http://www.intuit.ru
Интернет--портал ресурсов по математическим наукам - http://www.mathnet.ru
Интернет--портал ресурсов по математическим наукам - http://www.math.ru/
Интернет--портал ресурсов по математическим наукам - http://www.allmath.com/
Электронная библиотека по техническим наукам - http://techlibrary.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Непрерывные математические модели" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB.audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Лекции и практические занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом(маркером).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010300.68 "Фундаментальная информатика и информационные технологии" и магистерской программе Математические основы и программное обеспечение информационной безопасности и защиты информации .

Автор(ы):			
Лапин А.В			
" "	_201 _	_ г.	
Рецензент(ы):			
Турилова È.Á.			
""	201_	Г.	