МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт фундаментальной медицины и биологии

V	ГРІ		V	ДΑ	\mathbf{L}
y	ΙОΙ	ᄄ	'木.	ЦΑ	NC.

Программа дисциплины

Программируемая клеточная гибель М2.ДВ.2

Направление подготовки: 020400.68 - Биология
Профиль подготовки: Биохимия и молекулярная биология
Квалификация выпускника: <u>магистр</u>
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Абрамова З.И.
Рецензент(ы):
Ишмухаметова Д.Г.
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Алимова Ф. К. Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института фундаментальной медицины и биологии: Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Абрамова З.И. кафедра биохимии ИФМиБ отделение фундаментальной медицины , Zinaida.Abramova@kpfu.ru

1. Цели освоения дисциплины

Целью дисциплины "Программируемая клеточная гибель" является: Формирование научного мировоззрения в области биохимии жизненных процессов: изучение фундаментального физиологического процесса - программируемая клеточная гибель, обусловливающего закономерности взаимосвязи "структура - свойства - биологические функции-норма-патология"; освоение и углубление знаний по вопросам единства, взаимозависимости и структурно-функциональной специфики нормы и патологии при развитии организма.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.ДВ.2 Профессиональный" основной образовательной программы 020400.68 Биология и относится к дисциплинам по выбору. Осваивается на 1 курсе, 1 семестр.

Профессиональный цикл, дисциплина по выбору M2.ДВ3. Проводится на 1 курсе 1 семестре. Дисциплина базируется на знаниях, приобретенных магистрантами при изучении дисциплин: биохимия, физиология растений, физиология животных и генетика. При ее прохождении закладываются базовые знания для дальнейшего успешного усвоения дисциплин "Молекулярная биология старения", "Морфология и биохимия клеток крови", "Молекулярные и биохимические аспекты патогенеза иммунной системы" и других дисциплин биологического направления.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-6- (общекультурные компетенции)	Спсобен самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно связанных со сферой деятельности.
ПК-10 (профессиональные компетенции)	В соответствии с видами деятельности глубоко понимает и творчески использует в научной и производственно-технологической деятельности знания фундаментальных и прикладных разделов специальных дисциплин магистерской программы.
ПК-2 (профессиональные компетенции)	Знает и использует основные теории, концепции принципы избранной области деятельности, способен к систематическому мышлению;
ПК-3 (профессиональные компетенции)	Самостоятельно анализирует имеющуюся информацию, выявляет фундаментальные проблемы, ставит задачу и выполняет лабораторные биологические исследования при решении конкретных задач по специализации с использованием современной аппаратуры и вычислительных средств, демонстрирует ответственность за качество работ и научную достоверность результатов;

В результате освоения дисциплины студент:

- 1. должен знать:
- -об особенностях путей программируемой клеточной гибели (ПКГ);
- -о молекулярных механизмах ПКГ, их роли в развитии патологий (канцерогенеза и аутоиммунных заболеваний);
- -о физико-химических методах исследования биомолекул, участвующих при запуске ПКГ.

2. должен уметь:

оперировать основными терминами и понятиями в области ПКГ, а также приводить примеры отдельных сигнальных путей онкогенеза

3. должен владеть:

базовыми профессионально-профилированными методами получения лабораторной биологической информации.

- показать знания основных биологических понятий, знания биологических законов и явлений;
- -демонстрировать современные проблемы и достижения, глубокое понимание теоретических основ Программируемой клеточной гибели, как фундаментального физиологического процесса отвечающего за гомеостаз функционирования клетки, ткани, органа и организма в целом и ее роль при развитии патологии;
- -к самостоятельному проведению исследований, постановке естественнонаучного эксперимента, использованию информационных технологий для решения научных и профессиональных задач, анализу и оценке результатов лабораторных исследований в области исследования ПКГ;
- владеть фактическим материалом о механизме регуляции клеточного гомеостаза;
- владеть методами физико-химической и клеточной биологии (основными молекулярными методами), применять их в лабораторных исследованиях, решении проблем функционирования процесса ПКГ и т.д;
- осуществлять поиск и анализ научной информации по актуальным вопросам современного естествознания- ПКГ:
- применять научные знания в области биологической технологии в учебной и профессиональной деятельности.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	, Лабораторные работы	
1.	Тема 1. Понятие о программированной гибели клетки (исторические аспекты). Феноменология и методы выявления апоптоза	1	1	2	2	0	реферат коллоквиум
2.	Тема 2. Роль апоптоза в многоклеточном организме. Апоптоз животных, растений и микроорганизмов.	1	2	2	2	0	научный доклад реферат
3.	Тема 3. Место апоптоза в патологии. Физиологические патологические процессы, в которых принимает участие апоптоз.	1	3	2	2	0	реферат презентация
4.	Тема 4. Апоптоз - генетически детерминированный путь клеточной смерти. Особенность генной сети апоптоза.	1	4	2	4	0	контрольная работа реферат
5.	Тема 5. Биохимия программируемой клеточной гибели. Рецепторный и митохондриальный путь активации апоптоза.	1	5	2	4	0	тестирование реферат
	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Итого			10	14	0	

4.2 Содержание дисциплины

Тема 1. Понятие о программированной гибели клетки (исторические аспекты). Феноменология и методы выявления апоптоза

лекционное занятие (2 часа(ов)):

Понятие о программируемой клеточной гибели (исторические аспекты). Методы выявления апоптоза.

практическое занятие (2 часа(ов)):

Новый взгляд на классификацию ПКГ. Варианты программируемой гибели клеток: апоптоз, митотическая катастрофа, аутофагическая гибель, программированный некроз.

Тема 2. Роль апоптоза в многоклеточном организме. Апоптоз животных, растений и микроорганизмов.

лекционное занятие (2 часа(ов)):

Роль апоптоза в многоклеточном организме: апоптоз животных, растений и микроорганизмов.

практическое занятие (2 часа(ов)):

Апоптоз, процессы формообразования и клеточного гомеостаза на уровне организма Автономный механизм апоптоза при эмбриогенезе.

Тема 3. Место апоптоза в патологии. Физиологические и патологические процессы, в которых принимает участие апоптоз.

лекционное занятие (2 часа(ов)):

Место апоптоза в патологии. Физиологические и патологические процессы, в которых принимает участие апоптоз.

практическое занятие (2 часа(ов)):

Причины интенсивного изучения апоптоза. Болезни, основой которых является усиление или торможение апоптоза.

Тема 4. Апоптоз - генетически детерминированный путь клеточной смерти. Особенность генной сети апоптоза.

лекционное занятие (2 часа(ов)):

Генетика программируемой клеточной гибели. Особенность генной сети апоптоза.

практическое занятие (4 часа(ов)):

p53 регулируемая генная сеть. Bcl-2 семейство белков - медиаторов апоптоза.TNF-alpha индуцирует два пути передачи сигнала. Ингибиторы апоптоза. NF-kappaB ? ключевой транскрипционный фактор, обеспечивающий выживание клетки.

Тема 5. Биохимия программируемой клеточной гибели. Рецепторный и митохондриальный путь активации апоптоза.

лекционное занятие (2 часа(ов)):

Биохимия программируемой клеточной гибели. Рецепторный и митохондриальный пути активации апоптоза.

практическое занятие (4 часа(ов)):

Апоптотические нуклеазы

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Понятие о программированной	1	1	подготовка к коллоквиуму	8	коллоквиум
	гибели клетки (исторические аспекты). Феноменология и методы выявления апоптоза			подготовка к реферату "Молекулярные механизмы апоптоза"	8	реферат
2.	Тема 2. Роль апоптоза в многоклеточном организме. Апоптоз животных, растений и микроорганизмов.	1			8	научный доклад
				подготовка к реферату	10	реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
3.	Тема 3. Место апоптоза в патологии. Физиологические и патологические	1		подготовка к презентации	8	презентация
	процессы, в которых принимает участие апоптоз.			подготовка к реферату	8	реферат
4.	Тема 4. Апоптоз - генетически детерминированный путь клеточной смерти.	1	1	подготовка к контрольной работе	8	контрольная работа
	Путь клеточной смерти. Особенность генной сети апоптоза.			подготовка к реферату	8	реферат
5.	Тема 5. Биохимия программируемой клеточной гибели. Рецепторный и	1		подготовка к реферату	10	реферат
	гецепторный и митохондриальный путь активации апоптоза.			подготовка к тестированию	8	тестирование
	Итого				84	

5. Образовательные технологии, включая интерактивные формы обучения

Освоение дисциплины "Программируемая клеточная гибель" предполагает использование как традиционных (лекции, практические занятия с использованием методических материалов), так и инновационных образовательных технологий с использованием в учебном процессе активных и интерактивных форм проведения занятий: лекции - визуализации, практические занятия: мозговые штурмы, дискуссии, решение комплексных ситуационных заданий в рамках лабораторных практик, выполнение ряда практических заданий с использованием профессиональных программных средств создания и ведения электронных баз данных; мультимедийных программ, включающих подготовку и выступления студентов на семинарских занятиях.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Понятие о программированной гибели клетки (исторические аспекты). Феноменология и методы выявления апоптоза

коллоквиум, примерные вопросы:

Исторический обзор развития программируемой клеточной гибели. Современное состояние науки о ПКГ, современные методы исследования.

реферат, примерные темы:

1. Маркеры и методы определения апоптоза. 2. Роль апоптоза в регуляции физиологических функций организма. 3. Биохимиечкие методы верификации апоптоза. 4. Микроскопические методы верификации апоптоза.

Тема 2. Роль апоптоза в многоклеточном организме. Апоптоз животных, растений и микроорганизмов.

научный доклад, примерные вопросы:

Исследование механизмов защитного действия белков теплового шока при действии бактериальных патогенов на клетки врожденного иммунитета;

реферат, примерные темы:

Сравнительная характеристика апоптоза животных, растений и микроорганизмов.

Тема 3. Место апоптоза в патологии. Физиологические и патологические процессы, в которых принимает участие апоптоз.

презентация, примерные вопросы:

Исследование молекулярно-клеточных механизмов апоптоза и устойчивости живых систем при действии физико-химических факторов окружающей среды.

реферат, примерные темы:

Нарушения апоптоза причина возникновения патологии, или апоптоз не может справиться с проблемной клеткой.

Тема 4. Апоптоз - генетически детерминированный путь клеточной смерти. Особенность генной сети апоптоза.

контрольная работа, примерные вопросы:

реферат, примерные темы:

Тема 5. Биохимия программируемой клеточной гибели. Рецепторный и митохондриальный путь активации апоптоза.

реферат, примерные темы:

тестирование, примерные вопросы:

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Текущий контроль проводится систематически с целью установления уровня овладения студентами материала. В течение семестра, в соответствии с программой курса, проводятся практические занятия в виде семинаров и проводится опрос студентов по каждой теме. Текущий контроль предусматривает рейтинговую систему оценки знаний студентов по уровню их подготовки к лабораторным работам.

Промежуточный контроль проводится с целью определения качества усвоения лекционного материала и части дисциплины, предназначенной для самостоятельной работы.

Эффективным является его проведение в письменной форме в виде рефератов и тестов, составленных по разделам дисциплины. Отвечая на тесты, студенты могут в предельно сжатые сроки систематизировать знания. Сосредоточить внимание на основных процессах и понятиях, сформулировать примерную структуру ответов на экзаменационные вопросы.

Результаты промежуточного контроля по оценке фиксируются в "Ведомости текущего контроля знаний в семестре".

Итоговый контроль. Для контроля усвоения дисциплины предусмотрен зачет, на котором надо ответь на вопросы билета. Оценка является итоговой по курсу и проставляется в приложение к диплому.

Задачи контроля.

Сформировать общебиологическое понятие о единстве всего живого на Земле и специфических особенностей различных царств, проявляющихся на клеточном уровне.

БАЗОВЫЕ ЗНАНИЯ.

Положения клеточной теории.

Химические соединения клетки и их роль в жизнедеятельности клетки. Роль органических и неорганических веществ летки.

Связь строения и функций частей и органоидов клетки.

Мембранный принцип организации клеток.

Отличия в строении клеток прокариот и эукариот.

Строение и функции белков.

Строение и функции ферментов.

БАЗОВЫЕ ЗНАНИЯ.

Хромосомная теория наследственности.

Генотип как целостная система.

Методы генетических исследований.

Основные формы изменчивости.

БАЗОВЫЕ ЗНАНИЯ.

клеточный цикл.

стволовая клетка.

биохимия метаболических путей.

САМОСТОЯТЕЛЬНАЯ РАБОТА

Самостоятельная работа студентов (СРС) включает следующие виды работ:

- изучение теоретического лекционного материала;
- -подготовка к семинарам.
- подготовка к коллоквиумам, к контрольным работам.
- -написание рефератов
- -подготовка к экзамену.

ПРИМЕРНЫЙ ПЛАН РЕФЕРАТА:

Содержание и объем пояснительной записки (или введения): актуальность проблемы, обоснование темы. Постановка цели и задач. Объем: 2-3 стр. (2 ч).

Основная часть: должна включать основные вопросы, подлежащие освещению. Самостоятельной работой студента является подбор и составление полного списка литературы (кроме указанных преподавателем) для освещения и обобщения новейш

литературы (кроме указанных преподавателем) для освещения и обобщения новейших достижений науки по теме реферата. Выявление дискуссионных, выдвигающих спорные вопросы и проблемы ученых. Объем: 20-25 стр. (8 ч.).

Заключение: должно включать обобщение анализа литературы и выводы. Объем: 2-3 стр. (1 ч).

Список использованной литературы: не менее 10-15 источников.

Примечание: Тематический план примерный. Студенты имеют право на выбор темы по своим интересам.

ТЕМЫ СЕМИНАРОВ:

- Тема 1. Новое в классификации апоптоза...
- Тема 2. Микроскопические методы верификации апоптотических клеток
- Тема 3. Биохимиечкие методы верификации апоптоза.
- Тема 4. Роль апоптоза при развитии атеросклероза.
- Тема 5. Нарушения апоптоза причина возникновения патологии, или апоптоз не может справиться с проблемной клеткой.
- Тема 6.Взаимоотношение апоптоза и аутоиммунитета.
- Тема 7. Апоптоз и канцерогенез
- Тема 8. ПКС-II типа
- Тема 9. ПКС-III типа

ПРИМЕРНЫЕ ТЕМЫ РЕФЕРАТОВ

Цель: приобретение навыков анализа научной литературы по определенной теме.

- 1. Исследование молекулярно-клеточных механизмов апоптоза и устойчивости живых систем при действии физико-химических факторов окружающей среды.
- 2.Исследование действия апоптоз-модулирующих факторов на механизмы клеточной гибели лимфоцитов человека и животных;

- 3. Исследование механизмов клетчной гибели (апоптоза, некроза и эффероцитоза) нейтрофилов при действии бактериальных патогенов;
- 4. Исследование механизмов защитного действия белков теплового шока при действии бактериальных патогенов на клетки врожденного иммунитета;
- 5. Сравнительная характеристика апоптоза животных, растений и микроорганизмов.
- 6.Взаимодействие апоптоза, аутофагии и некроза в клетке.
- 7. Апоптоз и аутоиммунитет.
- 8. Апоптоз в защите от онкологических заболеваний.

ПРИМЕРНЫЕ ТЕСТЫ КОНТРОЛЬНЫХ РАБОТ:

- 1. РАННИЕ ПРИЗНАКИ НЕКРОЗА КЛЕТКИ ВЫЯВЛЯЮТСЯ ПРИ ПОМОЩИ ГИСТОХИМИЧЕСКОЙ РЕАКЦИИ
- а) С трифенилтетразолием
- б) По Шуенинову
- в) С толуидиновым синим
- г) По Браше
- д) По Фельгену
- 2. ЗАПРОГРАММИРОВАННАЯ СМЕРТЬ КЛЕТКИ НАЗЫВАЕТСЯ
- а) Апоптоз
- б) Аутолиз
- в) Гетеролиз
- г) Гетерофагия
- д) Аутофагия
- 3. АПОПТОЗНЫЕ ТЕЛЬЦА ПОДВЕРГАЮТСЯ
- а) Аутолизу
- б) Гетеролизу
- в) Фагоцитозу
- г) Ослизнению
- д) Инкапсуляции
- 4. КОМПОНЕНТ АПОПТОЗНЫХ ТЕЛЕЦ
- а Ядро с ядрышком
- б) Липидные вакуоли
- в Гигантские митохондрии
- г) Плотно упакованные органеллы
- д) Расширенные цистерны эндоплазматической сети
- 5 СПЕЦИФИЧЕСКОЕ ИММУНОГИСТОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ДЛЯ ВЫЯВЛЕНИЯ АПОПТОЗА
- а ШИК-реакция
- б) PAS-диагностика
- в) TUNEL-тест
- 6.ПРИЗНАК АПОПТОЗА
- а) кариолизис
- б) активация эндонуклеаз
- в) активация синтеза ДНК
- г) демаркационное воспаление
- д) снижение содержания свободного кальция в цитозоле
- 7.АПОПТОЗНЫЕ ТЕЛЬЦА ПОДВЕРГАЮТСЯ
- а) аутолизу

- б) гетеролизу
- в) фагоцитозу
- г) ослизнению
- д) инкапсуляции
- е) петрификации
- 8.АПОПТОЗ ОБЫЧНО ЗАХВАТЫВАЕТ
- а) группы клеток
- б) отдельные клетки
- в) большие участки паренхимы
- г) зависит от длительности процесса
- 9.ТИПЫ ГИБЕЛИ КЛЕТКИ
- а) некроз
- б) апоптоз
- в) набухание
- г) гипергидроз
- д) аутофагия
- е) фрагментация
- 10.ГЛАВНЫЕ ПРИЗНАКИ АПОПТОЗА
- а) набухание клетки
- б) сморщивание клетки
- в) повреждение органелл
- г) сохранение целостности органелл
- д) лизис ядерного гетерохроматина
- е) конденсация ядерного гетерохроматина
- 11.ФИЗИЧЕСКИЕ АГЕНТЫ, ВЫЗЫВАЮЩИЕ ПОВРЕЖДЕНИЕ КЛЕТКИ
- а) радиация
- б) электрический ток
- в) кислоты и щелочи
- г) механическая травма
- д) чрезмерное нагревание
- е) чрезмерное охлаждение
- 12.НАИБОЛЕЕ ВАЖНЫЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ И СМЕРТИ КЛЕТКИ
- а) липолиз
- б) фагоцитоз
- в) истощение запасов АТФ
- г) вакуолизация цитоплазмы
- д) нарушение гомеостаза кальция
- е) образование свободных радикалов кислорода
- ж) потеря избирательной проницаемости клеточных мембран
- 13. СВОБОДНЫЕ РАДИКАЛЫ В КЛЕТКЕ ВЫЗЫВАЮТ
- а) апоптоз
- б) повреждение ДНК
- в) избыточный синтез АТФ
- г) окислительное превращение белков
- д) перекисное окисление липидов мембран
- е) угнетение активности нейтральных протеаз
- 14.ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ НАИБОЛЕЕ АКТИВНО ПОВРЕЖДАЕТ:

- а) клеточные мембраны
- б) митохондрии
- в) ядро
- г) лизосомы
- д) эндоплазматический ретикулум
- е) матрикс цитоплазмы
- 15.СНИЖЕНИЕ ВНЕКЛЕТОЧНОГО РН ПРЕИМУЩЕСТВЕННО ПОВРЕЖДАЕТ:
- а) клеточные мембраны
- б) митохондрии
- в) ядро
- г) лизосомы
- д) эндоплазматического ретикулум
- е) матрикса цитоплазм
- 16.НАЗОВИТЕ ПРОЦЕССЫ, РАЗВИВАЮЩИЕСЯ В ЯДРЕ КЛЕТКИ ПРИ ЕЕ ГИБЕЛИ:
- а) гиперхромность
- б) сморщивание
- в) лизис
- г) распад на глыбки
- д) амитотическое деление
- е) появление вакуолей
- 17.НЕСОМНЕННЫМИ ПРИЗНАКАМИ ГИБЕЛИ КЛЕТКИ ЯВЛЯЮТСЯ:
- а) изменение формы ядра
- б) набухание ядра
- в) кариопикноз
- г) исчезновение ядрышка
- д) распад ядра
- е) растворение ядра
- 18. КЛЕТОЧНЫЕ ИММУННЫЕ РЕАКЦИИ РЕАЛИЗУЮТСЯ С ПОМОЩЬЮ
- а) эритроцитов
- б) нейтрофилов
- в) В-лимфоцитов
- г) Т-лимфоцитов
- д) плазматических клеток
- 19. ОБЩАЯ КЛЕТКА-ПРЕДШЕСТВЕННИЦА ЛИМФОЦИТОВ ЛОКАЛИЗУЕТСЯ В
- а) тимусе
- б) печени
- в) селезенке
- г) костном мозге
- д) головном мозге
- 20. В-ЛИМФОЦИТЫ СОЗРЕВАЮТ В
- а) печени
- б) тимусе
- в) селезенке
- г) костном мозге
- д) головном мозге
- 21. В СИСТЕМЕ В-ЛИМФОЦИТОВ ЭФФЕКТОРНЫМИ КЛЕТКАМИ ЯВЛЯЮТСЯ
- а) хелперные

- б) супрессорные
- в) плазматические
- г) нейтрофильные
- д) цитотоксические

22. К ИММУНОПАТОЛОГИЧЕСКИМ ПРОЦЕССАМ ОТНОСЯТСЯ:

- а) нарушения иммуногеноза
- б) аллергические реакции
- в) реакции при трансплантации
- г) инфекционный иммунитет
- д) аутоиммунные реакции
- е) иммунодефициты

23. ФИЗИОЛОГИЧЕСКАЯ ГИБЕЛЬ КЛЕТОК РЕГУЛИРУЕТСЯ

- а) некрозом
- б) апоптозом
- в) тромбозом
- г) кровотоком
- д) фиброплазией

Контрольные вопросы:

Клеточный (жизненный) цикл клетки и его регуляция - циклины и циклин-зависимые киназы. Митотический цикл. Точки рестрикции (R1 и R2). Основные события интерфазы. G1 и G2-чекпойнт системы клеточного цикла. Понятие о чекпойнте, система контроля повреждений ДНК: сенсоры, датчики, эффекторы, механизмы остановки клеточного цикла на стадиях G1 G2 в ответ на повреждение ДНК.

Митоз - биологическое значение, характеристика фаз. Митотический аппарат - ахроматиновые, полюсные, астральные микротрубочки, механизм движения хромосом.

Уровни регуляции митотической активности: внутриклеточный (на этапах транскрипции, трансляции, роль триггерных белков), контактное торможение, позиционная информация, полипептидные регуляторы пролиферации (стимуляторы и ингибиторы).

Гипотезы инволюции онтогенезов (старение): популяционно - генетическая, метилирование, свободно-радикальная, элевационная, накопление соматических мутаций, хромосомная, роль эпифиза. Система антиоксидантной защиты организма от старения. Проблема концевой репликации, теломераза, "гены бессмертия".

Апоптоз - генетически запрограммированная гибель клетки. Пути запуска апоптоза. Инструктивный апоптоз и "рецепторы смерти": взаимодействие с лигандом и передача сигнала в клетку, энзимы (каспазы) апоптоза и некроза, отличие морфологического проявления путей гибели, отличие в механизмах гибели клетки.

Программируемый некроз.

Аутофагия.

Митотическая катастрофа.

Апоптоз/некрозные континиумы.

ВОПРОСЫ к ЗАЧЕТУ

- 1. Клеточный рост и апоптоз
- 2. Апоптоз генетически детерминированный путь клеточной смерти: основные гены-инициаторызапуска и регуляции апоптоза
- 3. Понятие о программированной гибели клетки (исторические аспекты).
- 4. Роль апоптоза в регуляции физиологических функций организма.
- 5. Молекулярные механизмы регуляции апоптоза: каспазы.
- 6. Методы идентификации апоптоза.
- 7. Роль апоптоза в развитии и гомеостазе иммунной системы

- 8. Патологии, обусловленные угнетением апоптоза (аутоиммунные процессы, злокачественные новообразования).
- 9. Определение, морфологические проявления апоптоза
- 10. Молекулярные механизмы регуляции апоптоза: апоптотические эндонуклеазы и ДНК-связывающие белки.
- 11. "Рецепторный путь апоптоза: "рецепторы смерти
- 12. TNF -с рецепторов смерти
- 13. Определение и характеристика энергозависимости апоптоза
- 14. Морфологические проявления апоптоза.
- 15. Фагоцитоз апоптотических клеток или телец осуществляется окружающими здоровыми клетками, или паренхиматозными, или макрофагами.
- 16. Регуляция апоптоза.
- 17. Понятие об апоптозе клетки (исторические аспекты).
- 18. Митохондриальный путь апоптоза
- 19. Апоптоз клетки через рецепторы смерти
- 20. Апоптотические нуклеазы.
- 21. Патологии, обусловленные угнетением апоптоза (аутоиммунные процессы, злокачественные новообразования).
- 22. Клинико-диагностические аспекты оценки программированной клеточной гибели.
- 23. Роль регуляторов апоптоза и репарации ДНК в опухолевой трансформации клетки.
- 24. ДНК-связывающие апоптотические белки
- 25. Bcl-2-семейство. Происхождение названия гена
- 26. Свойство и биологическая роль апоптотических белков: p53, pRb
- 27. Факторы апоптоза и изменения в клетке при апоптозе.
- 28. Каспазы-биологическая роль
- 29. Каспазный путь апоптоза
- 30. Биохимические проявления апоптоза: ДНК фрагментация
- 31. Субстраты расщепления

7.1. Основная литература:

Молекулярная биология клетки, Фаллер, Джеральд М.;Шилдс, Деннис, 2012г.

Биология развития, Т. 2. Клеточные и молекулярные аспекты индивидуального развития, , 2005г.

- 1.Патология : Учебник в 2 т. / Под ред. В.А. Черешнева и В.В. Давыдова. М.: ГЭОТАР-Медиа, 2009. Т.1. 608 c.http://www.studmedlib.ru/ru/doc/ISBN9785970409985-0022.html
- 2.Пособие по клинической биохимии / Под ред. Л.В. Акуленко. М. : ГЭОТАР-Медиа, 2007. 256 c. http://www.studmedlib.ru/ru/doc/ISBN9785970403587-A019.html
- 3.Патология : Учебник в 2 т. / Под ред. В.А. Черешнева и В.В. Давыдова. М.: ГЭОТАР-Медиа, 2009. Т.1. 608 с. http://www.studmedlib.ru/ru/doc/ISBN9785970409985-0022.html
- 4.Патологическая анатомия : учебник / Струков А. И., Серов В. В. ; под ред. В. С. Паукова. -

6-е изд., доп. и перераб. - М.: ГЭОТАР-Медиа, 2013. - 880 с.:

ил.-http://www.studmedlib.ru/ru/doc/ISBN9785970424803-0008.html

5.Клиническая иммунология и аллергология с основами общей иммунологии: учебник.

Ковальчук Л.В., Ганковская Л.В., Мешкова Р.Я. 2012. - 640 с.:

ил.-http://www.studmedlib.ru/ru/doc/ISBN9785970422410-0009.html

7.2. Дополнительная литература:

Молекулярная биология, Коничев, Александр Сергеевич;Севастьянова, Галина Андреевна, 2005г.

Молекулярная биология клетки, Фаллер, Джеральд М.; Шилдс, Деннис, 2012г.

Молекулярная биология клетки, Фаллер, Джеральд М.;Шилдс, Деннис;Збарский, И. Б., 2006г.

- 1. Скибо, Юлия Валерьевна. Бронхиальная астма. Иммунологические аспекты заболевания: патологическое нарушение в развитии лимфоцитов больных атопической бронхиальной астмой / Ю. В. Скибо, З. И. Абрамова, С. А. Д. Водунон.[Saarbrucken]: LAP LAMBERT Academic Publ., [2011].103 с.: ил.; 22.Библиогр.: с. 85-102 (174 назв.).ISBN 978-3-8433-1482-4((в обл.)).
- 2. Князькин, Игорь Владимирович. Апоптоз в онкоурологии / И.В. Князькин, В.Н. Цыган; Рос. акад. естеств. наук, С.-Петерб. центр простатологии.Санкт-Петербург: Наука, 2007.239 с.: ил.; 20.Рез. на англ. яз.На 4-й с обл. авт.: Князькин И.В. к.м.н., Цыган В.Н. д.м.н., проф..Библиогр.: с. 210-239 (292 назв.).ISBN 978-5-02-026277-5, 3000.
- 3.Патологическая анатомия : атлас : учеб. пособие для студентов медицинских вузов и последипломного образования / [Зайратьянц О. В. и др.] ; под ред. О. В. Зайратьянца. М. : ГЭОТАР-Медиа, 2012. 960 с. :

ил.http://www.studmedlib.ru/ru/doc/ISBN9785970420072-0003/011.html

4.Токсикологическая химия. Аналитическая токсикология: учебник / Под ред. Р.У. Хабриева, Н.И. Калетиной. - М.: ГЭОТАР-Медиа, 2010. - 752 с.: ил. ГЛАВА 10 ФОРМЫ ГИБЕЛИ КЛЕТКИ.http://www.studmedlib.ru/ru/doc/ISBN9785970415375-0005/025.html

7.3. Интернет-ресурсы:

Апоптоз и старение. Гипотеза акад.Скулачева - http://www.starenie.ru/prichini/apoptoz.php; http://www.starenie.ru/prichini/podstati/skulashov.php

Апоптоз (Программируемая клеточная смерь) - http://www.medbiol.ru/medbiol/apon/0000923f.htm Белушкина Н.Н. - www.science-faculty.net.ru/lek/apoptosis.htm

Генетически запрограммированная смерть клетки (апоптоз) -

http://www.nedug.ru/library/%D0%B4%D1%80%D1%83%D0%B3%D0%B8%D0%B5_%D0%BC%D0%B0

Роль апоптоза в развитии атеросклероза, ишемии миокарда и сердечной недостаточности - http://www.consilium-medicum.com/article/11052

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Программируемая клеточная гибель" предполагает использование следующего материально-технического обеспечения:

Учебный класс, оснащенный мультимедийной техникой, для проведения лекционных занятий. Список оборудования

для проведения лпрактических и лабораторных работ по дисциплине "Пограммируемая клеточная гибель"

- 1. Проточный цитометр BD FACSCalibur (США)
- 2. Магнитный сепаратор клеток "DYNALR invitrogen bead separations" (США)
- 3. Центрифуги: EppendorfR:
- centrifige 5819R
- centrifuge 5415R
- centrifuge 5415C
- 4. Система для электрофореза:
- Камера горизонтального э/ф "SE-1"
- Камера вертикального э/ф с заливочным устройством "VE-10"
- Система BioRad для э/ф и блотинга @Mini Trans-Blot Electphoretic Transfer Cell
- 5. Блоки питания:

- Power PacUniversal (BioRAD)
- 2301 Macrodrive 1 Power Supply (Pharmacia LKB)
- 6.Качалки и шейкеры:
- Micro-shaker type 326
- Переносный вортекс "Vortex V-1 plus"
- Роллер-миксер "Movil Rod" (SELECTA, Испания)
- Качалкb[^] BD LAENA Typ T22, THY S-2
- 7.Весы лабораторные:
- Весы электронные Tun SJ ViBRA (Япония)
- Электронные весы ER-182A(Япония)
- 8. Портативный рН-метр НІ
- 9. Холодильники:
- Морозильник "Pozis-Свиягя"
- Холодильник "Bosch"
- 10. Магнитная мешалка "Magnetic Stirrer MS-3000"
- 11. Термостат ТС-1/20 СПУ
- 12 Баня KL-1 и KL-4 (Прага)

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 020400.68 "Биология" и магистерской программе Биохимия и молекулярная биология.

Автор(ы):		
Абрамова	а З.И	
""	201 г.	
Рецензен	іт(ы):	
Ишмухам	етова Д.Г.	
"_"	201 г.	