МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Химический институт им. А.М. Бутлерова

УТВЕРЖДАЮ

Программа дисциплины

<u>Элементы статистической термодинамики</u> С3.ДВ.1

Специальность: 020201.65 - Фундаментальная и прикладная химия
Специализация: <u>Физическая химия</u>
Квалификация выпускника:
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Седов И.А.
Рецензент(ы):
Верещагина Я.А.
· · · · · · · · · · · · · · · · · · ·
СОГЛАСОВАНО:
Заведующий(ая) кафедрой:
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Химического института им. А.М. Бутлерова:
Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2017

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) старший научный сотрудник, к.н. Седов И.А. лаборатория физико-химических исследований Отдел физической химии , lgor.Sedov@kpfu.ru

1. Цели освоения дисциплины

Осознание связей между фундаментальными законами макро- и микромира, общности и различий квантовомеханического и классического подхода к описанию окружающего мира, строгое обоснование законов термодинамики, знакомство с современными теоретическими методами физической химии.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " С3.ДВ.1 Профессиональный" основной образовательной программы 020201.65 Фундаментальная и прикладная химия и относится к дисциплинам по выбору. Осваивается на 4 курсе, 7 семестр.

Дисциплина "Элементы статистической термодинамики" относится к дисциплинам по выбору учебного цикла СЗ "Профессиональные (специальные) дисциплины" для профиля "Физическая химия". Студенты, приступающие к освоению дисциплины, должны владеть знаниями по следующим дисциплинам: Физическая химия, Квантовая химия, Физика, Математика.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции					
	понимает сущность и социальную значимость профессии,					
(профессиональные	основных перспектив и проблем, определяющих конкретную					
компетенции)	область деятельности					

В результате освоения дисциплины студент:

1. должен знать:

основные постулаты статистической термодинамики, принцип Паули и неразличимость элементарных частиц, виды статистических ансамблей и функций распределения, понятие статистической суммы и ее связь с термодинамическими функциями, расчет статистической суммы (интеграла) на основе представлений квантовой и классической механики, вклады отдельных видов энергии в статистические суммы и термодинамические функции, вириальное уравнение и другие уравнения состояния неидеальных газов, связь параметров межмолекулярных взаимодействий и параметров уравнений состояния, методы численного моделирования реальных систем.

2. должен уметь:

рассчитывать статистические суммы и термодинамические функции для модельных объектов: идеальных газов, жесткого ротатора, гармонического осциллятора; неидеальных газов с определенным видом потенциала межмолекулярного взаимодействия

3. должен владеть:

теоретическим аппаратом статистической термодинамики

применять расчетные методы для предсказания термодинамических свойств веществ

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 7 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные			Текущие формы контроля
1.	Тема 1. Основы статистической термодинамики. Вывод основных видов функций распределения. Связь статистической суммы с макроскопическими свойствами вещества.	7	1-7	7	занятия 6	расоты	устный опрос
2.	Тема 2. Интерпретация свойств идеальных объектов на основе статистической термодинамики. Расчет статистических сумм и термодинамических функций для различных газов, констант равновесия и энтальпий газофазных реакций.	7	8-12	7	6	0	домашнее задание
3.	Тема 3. Применение статистической термодинамики к реальным системам. Методы численного моделирования.	7	13-17	8	8	0	контрольная работа

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
	Тема . Итоговая форма контроля	7		0	0	0	экзамен
	Итого			22	20	0	

4.2 Содержание дисциплины

Тема 1. Основы статистической термодинамики. Вывод основных видов функций распределения. Связь статистической суммы с макроскопическими свойствами вещества.

лекционное занятие (7 часа(ов)):

Основные принципы статистики. Молекулярные модели макроскопических тел: идеальный газ. Термодинамика газа, макроскопическое состояние, внешние условия, отклик на внешнее возмущение, релаксация и квазистатические процессы, стационарные и равновесные состояния, энергия и энтропия, уравнение состояния, теплоемкости. Основные идеи и задачи статистики: система и подсистемы, характеристики "точки" газа, усреднение по времени и объему, термодинамический предел, энергия и давление, флуктуации. Задачи статистики.

практическое занятие (6 часа(ов)):

Практические занятия по статистической термодинамике.

Тема 2. Интерпретация свойств идеальных объектов на основе статистической термодинамики. Расчет статистических сумм и термодинамических функций для различных газов, констант равновесия и энтальпий газофазных реакций. *пекционное занятие (7 часа(ов)):*

Классическая статистика газа. Функция распределения, соображения о размерностях, масштабирование фазового пространства. Симметрия функции распределения: независимость от начальных условий, метод ансамблей, квазистационарные состояния, теорема Лиувилля, аддитивные интегралы движения, микроканоническое распределение, исключение импульса и момента, вид функции распределения, проблемы с определением энтропии. Квантовал статистика газа. Соотношения неопределенностей, чистые и смешанные состояния, матрица плотности, теорема Лиувилля, микроканоническое распределение, вид функции распределения, статистический вес макроскопического состояния. Квазиклассический переход, введение постоянной Планка в классическую статистику,

Квазиклассический переход, введение постоянной Планка в классическую статистику, квантование фазового пространства, статистические веса макросостояний в классической статистике

практическое занятие (6 часа(ов)):

Практические занятия по расчетам статистических сумм и термодинамических функций для различных газов, констант равновесия и энтальпий газофазных реакций.

Тема 3. Применение статистической термодинамики к реальным системам. Методы численного моделирования.

лекционное занятие (8 часа(ов)):

Термодинамические величины, Энтропия в квантовой и классической статистике, физический смысл энтропии, различные полезные формулы, закон возрастания энтропии, теорема Нернста. Температура и давление. Термическое и механическое равновесия. Основное термодинамическое тождество. Термодинамические неравенства: устойчивость равновесия, стабильные и метастабильные состояния. Термодинамические функции: энергия, энтальпия, свободная энергия и термодинамический потенциал. Зависимость термодинамических функций от числа частиц. Химический потенциал. 3. Распределение Гиббса. Каноническое распределение Гиббса, большое каноническое распределение Гиббса с переменным числом частиц. Упрощения для идеального газа: принцип равнораспределения, распределения Больцмана, Ферми-Дирака и Бозе-Эйнштейна, свободная энергия и уравнение состояния идеального газа. Вычисление термодинамических функций одно-, двух- и многоатомного газов, термодинамические таблицы, стандартные состояния.

практическое занятие (8 часа(ов)):

Практические занятия по методам численного моделирования.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Основы статистической термодинамики. Вывод основных видов функций распределения. Связь статистической суммы с макроскопическими свойствами вещества.	7	1-/	подготовка к устному опросу	11	устный опрос
2.	Тема 2. Интерпретация свойств идеальных объектов на основе статистической термодинамики. Расчет статистических сумм и термодинамических функций для различных газов, констант равновесия и энтальпий газофазных реакций.	7	8-12	подготовка домашнего задания	11	домашнее задание
3.	Тема 3. Применение статистической термодинамики к реальным системам. Методы численного моделирования.	7		подготовка к контрольной работе	8	контрольная работа
	Итого				30	

5. Образовательные технологии, включая интерактивные формы обучения

Лекции, мультимедийные презентации, практические занятия, в том числе с использованием компьютерных программ для решения задач.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основы статистической термодинамики. Вывод основных видов функций распределения. Связь статистической суммы с макроскопическими свойствами вещества.

устный опрос, примерные вопросы:

Микроканонический ансамбль. Эргодическая гипотеза. Понятие энтропии и второе начало термодинамики. Канонический ансамбль и вывод распределения Больцмана. Статистическая сумма и ее связь с термодинамическими функциями. Статистический интеграл.

Тема 2. Интерпретация свойств идеальных объектов на основе статистической термодинамики. Расчет статистических сумм и термодинамических функций для различных газов, констант равновесия и энтальпий газофазных реакций.

домашнее задание, примерные вопросы:

Большой канонический ансамбль, вывод функции распределения. Бозоны и статистика Бозе-Эйнштейна. Фермионы и статистика Ферми-Дирака. Колебательная статистическая сумма и характеристическая колебательная температура. Вращательная сумма и характеристическая вращательная температура. Поступательная сумма, статистический интеграл для одноатомного идеального газа.

Тема 3. Применение статистической термодинамики к реальным системам. Методы численного моделирования.

контрольная работа, примерные вопросы:

Ядерная и электронная статистические суммы. Молекулы орто- и параводорода. Теплоемкость идеального кристалла и температура Дебая. Электронный газ, сверхпроводимость и сверхтекучесть. Неидеальные системы, конфигурационный интеграл. Модель решеточного газа. Потенциалы межмолекулярных взаимодействий. Вывод уравнений состояния неидеальных газов. Применение статистической термодинамики к описанию жидкостей. Методы численного моделирования.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Для текущего контроля проводятся контрольные работы по решению задач.

Примерный список тем для итогового контроля знаний:

Микроканонический ансамбль. Эргодическая гипотеза. Понятие энтропии и второе начало термодинамики. Канонический ансамбль и вывод распределения Больцмана. Статистическая сумма и ее связь с термодинамическими функциями. Статистический интеграл. Большой канонический ансамбль, вывод функции распределения. Бозоны и статистика Бозе-Эйнштейна. Фермионы и статистика Ферми-Дирака. Колебательная статистическая сумма и характеристическая колебательная температура. Вращательная сумма и характеристическая вращательная температура. Поступательная сумма, статистический интеграл для одноатомного идеального газа. Ядерная и электронная статистические суммы. Молекулы орто- и параводорода. Теплоемкость идеального кристалла и температура Дебая. Электронный газ, сверхпроводимость и сверхтекучесть. Неидеальные системы, конфигурационный интеграл. Модель решеточного газа. Потенциалы межмолекулярных взаимодействий. Вывод уравнений состояния неидеальных газов. Применение статистической термодинамики к описанию жидкостей. Методы численного моделирования.

7.1. Основная литература:

1. Эткинс П. Физическая химия. Т. 1-2. М. 2007.

7.2. Дополнительная литература:

- 1. Майер Дж., Гепперт-Майер М., Статистическая механика, пер. с англ., 2 изд., М., 1980
- 2. Климонтович Ю.Л. Статистическая физика. М., Наука, 1982.
- 3. Шиллинг, Г. Статистическая физика в примерах. М., Мир, 1976.
- 4. Киттель Ч. Статистическая термодинамика, М. Наука. 1977
- 5. Haile J. M. Molecular Dynamics Simulation: Elementary Methods (Monographs in Physical Chemistry). Wiley, 1992.
- 6. Физическая химия. В 2 кн. Под ред. Краснова К.С. 3-е изд., испр. М.: Высшая школа, 2001.
- 7. Терлецкий, Я.П. Статистическая физика. Издание 3-е. М.: "Высшая школа", 1994.
- 8. GlazerA. M., Wark J. S. Statistical Mechanics: A Survival Guide. Oxford University Press, 2001.

7.3. Интернет-ресурсы:

Cambridgesoft ChemBioOffice - http://www.cambridgesoft.com/software/ChemBioOffice/TINKER molecular modeling software - http://dasher.wustl.edu/tinker/

книги - http://library.nu

книги - http://gen.lib.rus.ec

Портал "Статистическая механика" Википедии: - http://en.wikipedia.org/wiki/Statistical_mechanics

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Элементы статистической термодинамики" предполагает использование следующего материально-технического обеспечения:

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по специальности: 020201.65 "Фундаментальная и прикладная химия" и специализации Физическая химия.

Автор(ы)	:		
Седов И.	A		
""_	201 _	_ г.	
Рецензе	нт(ы):		
Верещаг	ина Я.А		
" "	201	Г.	