МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"

Инженерный институт

подписано электронно-цифровой подписью

Программа дисциплины

<u>Химия</u> Б1.Б.21

Направление подготовки: 16.03.01 - Техническая физика

Профиль подготовки: <u>не предусмотрено</u> Квалификация выпускника: <u>бакалавр</u>

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2019

Автор(ы): <u>Амиров Р.Р.</u>

Рецензент(ы): Зиганшин М.А.

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Амиров Р. Р.			
Протокол заседания кафедры No от ""		20_	_г
Учебно-методическая комиссия Инженерного института:			
Протокол заседания УМК No от " "	20	Γ.	

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
- 4.2. Содержание дисциплины
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 6.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения
- 6.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 6.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций
- 7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
- 7.1. Основная литература
- 7.2. Дополнительная литература
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

Программу дисциплины разработал(а)(и) заведующий кафедрой, д.н. (профессор) Амиров Р.Р. (Кафедра неорганической химии, Химический институт им. А.М. Бутлерова), Rustem.Amirov@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Выпускник, освоивший дисциплину, должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции
	способностью использовать фундаментальные законы природы и основные законы естественнонаучных дисциплин в профессиональной деятельности

Выпускник, освоивший дисциплину:

Должен знать:

- что химия представляет собой дисциплину, интегрирующую основные достижения химических наук,, которая является составной частью естествознания и служит необходимой ступенью для углубленного понимания специальных химических дисциплин,
- основные законы химии, знать области применения этих законов и понимать их принципиальные возможности,
- как ориентироваться в учебной, монографической, справочной и журнальной литературе в области общей химии.
- и приобрести навыки выполнения простейших химических расчетов и основных приемов работы с различными классами неорганических веществ.

Должен уметь:

Работать с химическими реактивами, растворителями, лабораторным химическим оборудованием.

Производить расчеты, связанные с приготовлением растворов заданной концентрации, определением термодинамических и кинетических характеристик химических процессов, определением стехиометрии химических реакций; определением условий образования осадков трудно растворимых веществ и др.

Использовать принцип периодичности и Периодическую систему для предсказания свойства простых и сложных химических соединений и закономерностей в их изменении.

Проводить простой учебно-исследовательский эксперимент на основе владения основными приемами техники работ в лаборатории.

Производить оценку погрешностей результатов физико-химического эксперимента.

Оформлять результаты экспериментальных и теоретических работ, формулировать выводы.

Владеть основными законами общей химии, готовность интерпретировать закономерности в изменении свойств элементов в связи с их электронным строением (положением в периодической системе).

Прогнозировать свойства веществ на примере однотипных соединений, способность анализировать результаты эксперимента и делать обоснованные прогностические выводы.

Должен владеть:

основными законами общей химии,

навыками интерпретации закономерности в изменении свойств элементов в связи с их электронным строением (положением в периодической системе),

умением прогнозировать свойства веществ на примере однотипных соединений,

показывать способность анализировать результаты эксперимента и делать обоснованные прогностические выводы.

Должен демонстрировать способность и готовность:

Работать с химическими реактивами, растворителями, лабораторным химическим оборудованием.

Производить расчеты, связанные с приготовлением растворов заданной концентрации, определением термодинамических и кинетических характеристик химических процессов, определением стехиометрии химических реакций; определением условий образования осадков трудно растворимых веществ и др.

Использовать принцип периодичности и Периодическую систему для предсказания свойства простых и сложных химических соединений и закономерностей в их изменении.

Проводить простой учебно-исследовательский эксперимент на основе владения основными приемами техники работ в лаборатории.

Производить оценку погрешностей результатов физико-химического эксперимента.

Оформлять результаты экспериментальных и теоретических работ, формулировать выводы.

Владеть основными законами общей химии, готовность интерпретировать закономерности в изменении свойств элементов в связи с их электронным строением (положением в периодической системе).

Прогнозировать свойства веществ на примере однотипных соединений, способность анализировать результаты эксперимента и делать обоснованные прогностические выводы.

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Данная учебная дисциплина включена в раздел "Б1.Б.21 Дисциплины (модули)" основной профессиональной образовательной программы 16.03.01 "Техническая физика (не предусмотрено)" и относится к базовой (общепрофессиональной) части.

Осваивается на 2 курсе в 4 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) на 144 часа(ов).

Контактная работа - 72 часа(ов), в том числе лекции - 36 часа(ов), практические занятия - 36 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 36 часа(ов).

Контроль (зачёт / экзамен) - 36 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 4 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

N	Разделы дисциплины / модуля	Семестр	- (D laoux)		Самостоятельная работа	
	-		Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Основные понятия и законы химии. Строение атома. Периодичность свойств элементов	4	6	6	0	6
2.	Тема 2. Химическая связь и валентность. Межмолекулярные взаимодействия	4	6	6	0	6
3.	Тема 3. Химическая термодинамика и химическая кинетика. Химическое равновесие	4	6	6	0	6
4.	Тема 4. Растворы и реакции в водных растворах	4	8	8	0	8
5.	Тема 5. Окислительно-восстановительные процессы	4	6	6	0	6
6.	Тема 6. Координационные (комплексные) соединения	4	4	4	0	4
	Итого		36	36	0	36

4.2 Содержание дисциплины

Тема 1. Основные понятия и законы химии. Строение атома. Периодичность свойств элементов

Основные понятия химии. Атом. Молекула. Химический элемент. Изотопный состав химических элементов. Простое и сложное вещество. Химический эквивалент. Агрегатное состояние вещества. Характерные особенности различных агрегатных состояний вещества. Температурные условия их существования. Понятие о стандартных условиях. Классы неорганических соединений: классификация. Получение и свойства оксидов, гидроксидов, кислот и солей. Графические формулы и их применимость к веществам с различной структурой.

Важнейшие понятия. История развития представлений о строении атома. Теория Бора. Волновая теория строения атома. Двойственная природа электрона. Принцип неопределенности. Понятие об электронном облаке. Электронная плотность. Понятие о радиусе атома. Квантовые числа как характеристики состояния электрона в атоме. s-, p-, d-, f- электроны. Понятия: энергетический уровень, подуровень, электронный слой, электронная оболочка, атомная орбиталь (AO). Принцип Паули и емкость электронных оболочек. Правило Хунда и порядок заполнения атомных орбиталей. Строение электронных оболочек атомов элементов. Радиусы атомов и ионов. Ионизационные потенциалы и энергия сродства к электрону, изменение по периодам и группам. Электроотрицательность элементов и ее изменение по периодам и группам. Вторичная периодичность. Строение ядра. Радиоактивность. Распространенность и устойчивость элементов в природе.

Тема 2. Химическая связь и валентность. Межмолекулярные взаимодействия

Важнейшие понятия. Основные особенности химического взаимодействия (химической связи) и механизм образования химической связи. Насыщаемость и направленность химической связи. Квантово-механическая трактовка механизма образования связи в молекуле водорода. Основные типы химической связи: ковалентная (неполярная и полярная), ионная, металлическая. Ковалентная связь: механизмы образования (обменный, донорно-акцепторный) и свойства (энергия, длина, угол связи, насыщаемость, направленность, поляризуемость). о и п-связи. Гибридизация орбиталей. Модель Гиллеспи. Основные положения теории валентных связей (ВС). Валентность химических элементов. Валентность с позиции теории ВС. Валентность s-, p-, d-, f-элементов. Постоянная и переменная валентности. Валентность и степень окисления атомов элементов в их соединениях. Теория молекулярных орбиталей (МО). Основные положения теории МО. Энергетическая диаграмма. Связывающие и разрыхляющие МО. Энергетические диаграммы МО двухатомных молекул элементов 2-го периода. сигма- и пи-МО.

Силы Ван-дер-Ваальса. Ориентационное, индукционное и дисперсионное взаимодействия. Энергия и природа ММВ по сравнению с энергией и природой химической связи. Межмолекулярная водородная связь. Зависимость физических свойств веществ с молекулярной структурой от характера ММВ. Влияние водородной связи на физические свойства веществ. Особенности физических свойств воды.

Тема 3. Химическая термодинамика и химическая кинетика. Химическое равновесие

Важнейшие понятия. Термодинамическая система. Параметры состояния. Функции состояния, понятие о полном дифференциале. Компонент и фаза. Работа и теплота. Понятие внутренней энергии системы. Первое начало термодинамики. Понятие энтальпии. Соотношения между энтальпией, теплотой и внутренней энергией. Закон Гесса. Стандартное состояние. Стандартная энтальпия образования вещества. Вычисление энтальпий реакций из величин стандартных энтальпий образования или сгорания исходных и конечных веществ. Второе начало термодинамики. Понятие энтропии. Статистическая интерпретация энтропии. Стандартная энтропия вещества. Влияние температуры на величину энтропии. Понятие энергии Гиббса. Соотношение между энергий Гиббса, энтальпией и энтропией системы. Стандартная энергия Гиббса образования вещества. Влияние температуры на величину энергии Гиббса. Изменение энергии Гиббса и направление протекания реакций. Роль энтальпийного, энтропийного факторов и температуры в оценке направления и полноты протекания реакций.

Гомогенные и гетерогенные реакции. Понятие о скорости химической реакции. Закон действия масс. Факторы, определяющие скорость химической реакции. Константа скорости химической реакции. Многостадийные реакции. Порядок и молекулярность реакций. Многостадийные процессы и закон действия масс. Влияние температуры на скорость химической реакции. Температурный коэффициент скорости. Энергия активации. Факторы, определяющие величину энергии активации. Энергия активации и скорость реакции. Переходное состояние или активированный комплекс. Уравнение Аррениуса. Влияние катализаторов на скорость химической реакции. Гомогенные и гетерогенные каталитические реакции. Каталитические яды. Ингибиторы. Смещение химического равновесия под воздействием различных факторов (изменение температуры, давления, концентрации реагирующих веществ).

Тема 4. Растворы и реакции в водных растворах

Определения растворов. Растворение как физико-химический процесс. Изменение энтальпии и энтропии при растворении веществ. Сольватация. Сольваты. Особые свойства воды как растворителя. Гидраты. Кристаллогидраты. Растворимость веществ. Растворение твердых, жидких и газообразных веществ. Влияние температуры, давления и природы веществ на их взаимную растворимость. Способы выражения состава растворов: массовая доля, молярность, нормальность, молярность, молярная доля. Диаграмма состояния воды. Коллигативные свойства растворов. Законы Рауля и Вант-Гоффа.

Электролиты и неэлектролиты. Электролитическая диссоциация, механизм диссоциации. Гидратация ионов в растворе. Сильные и слабые электролиты. Степень диссоциации электролитов, влияние на нее различных факторов. Константа диссоциации. Закон разбавления Оствальда. Теории кислот и оснований Аррениуса, Бренстеда и Льюиса.

Диссоциация воды, константа диссоциации и ионное произведение. Водородный показатель (рН). Понятие о буферных растворах.

Труднорастворимые электролиты. Произведение растворимости. Влияние температуры, одноименных ионов и рН на растворимость веществ. Критерии образования осадков.

Гидролиз солей. Гидролиз солей по катиону и аниону. Механизм гидролиза. Влияние природы соли, заряда, радиуса ионов на их гидролизуемость. Степень и константа гидролиза. Влияние концентраций, температуры и pH на степень гидролиза солей.

Тема 5. Окислительно-восстановительные процессы

Окислительно-восстановительные реакции. Важнейшие понятия. Типы окислительно-восстановительных реакций. Составление уравнений окислительно-восстановительных реакций. Подбор коэффициентов: метод электронного баланса, ионно-электронный метод. Изображение окислительно-восстановительных (редокс-) систем методом полуреакций (частных реакций). Окислительно-восстановительный (редокс-) потенциал как количественная характеристика редокс-системы. Уравнение Нернста. Стандартные редокс-потенциалы и способы их определения. Водородный электрод. Электрохимический ряд напряжений металлов. Зависимость величины редокс-потенциала системы от концентрации ионов, температуры, рН, комплексообразования в растворе. Редокс-потенциалы и оценка направления и полноты протекания окислительно-восстановительных реакций. Зависимость между величинами редокс-потенциалов систем и изменением энергии Гиббса. Окислительно-восстановительные процессы с участием электрического тока. Инертные и активные электроды. Схемы процессов на электродах при электролизе расплавов и водных растворов.

Тема 6. Координационные (комплексные) соединения

Важнейшие понятия. Положения теории Вернера. Центральный атом, внешняя и внутренняя сферы, координационное число, ядро комплекса, его заряд, главная и побочная валентности. Номенклатура координационных соединений. Типичные комплексообразователи. Факторы, определяющие способность атомов и ионов выступать в качестве комплексообразователя. Современная теория строения комплексных соединений. Ковалентные (с донорно-акцепторной и дативной связью) и ионные комплексы. Гибридизация атомных орбиталей при комплексообразовании и геометрия ковалентных комплексов. Внутри- и внешнеорбитальные комплексы. Поведение координационных соединений в растворах: диссоциация, лабильность, инертность. Полная и ступенчатые константы устойчивости (нестойкости).

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301).

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений".

Положение от 29 декабря 2018 г. № 0.1.1.67-08/328 "О порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет".

Положение № 0.1.1.67-06/241/15 от 14 декабря 2015 г. "О формировании фонда оценочных средств для проведения текущей, промежуточной и итоговой аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет"".

Положение № 0.1.1.56-06/54/11 от 26 октября 2011 г. "Об электронных образовательных ресурсах федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"".

Регламент № 0.1.1.67-06/66/16 от 30 марта 2016 г. "Разработки, регистрации, подготовки к использованию в учебном процессе и удаления электронных образовательных ресурсов в системе электронного обучения федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет"".

Регламент № 0.1.1.67-06/11/16 от 25 января 2016 г. "О балльно-рейтинговой системе оценки знаний обучающихся в федеральном государственном автономном образовательном учреждении высшего образования "Казанский (Приволжский) федеральный университет"".

Регламент № 0.1.1.67-06/91/13 от 21 июня 2013 г. "О порядке разработки и выпуска учебных изданий в федеральном государственном автономном образовательном учреждении высшего профессионального образования "Казанский (Приволжский) федеральный университет"".

6. Фонд оценочных средств по дисциплине (модулю)

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения

Этап	Форма контроля	Оцениваемые компетенции	Темы (разделы) дисциплины
Cours			
DEMIC	T PI		<u> </u>

Этап	Форма контроля	Оцениваемые компетенции	Темы (разделы) дисциплины
	Текущий контроль		
1	Контрольная работа		1. Основные понятия и законы химии.Строение атома. Периодичность свойств элементов 2. Химическая связь и валентность.Межмолекулярные взаимодействия
2	Контрольная работа	ОПК-1	3. Химическая термодинамика и химическая кинетика.Химическое равновесие 4. Растворы и реакции в водных растворах
3	Контрольная работа	ОПК-1	5. Окислительно-восстановительные процессы 6. Координационные (комплексные) соединения
	Экзамен	ОПК-1	

6.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Форма	Критерии оценивания Эт				
контроля	Отлично	Хорошо	Удовл.	Неуд.	
Семестр 4					
Текущий конт	роль				
Контрольная работа	Продемонстрирован высокий уровень	большая часть заданий. Присутствуют	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий.	Задания выполнены менее чем наполовину. Продемонстрирован неудовлетворительный уровень владения материалом. Проявлены недостаточные способности применять знания и умения к выполнению конкретных заданий.	

Форма контроля	Критерии оценивания					
	Отлично	Хорошо	Удовл.	Неуд.		
Экзамен	Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой дисциплины, усвоил взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявил творческие способности в понимании, изложении и использовании учебно-программного материала.	дисциплины, показал систематический характер знаний по дисциплине и способен к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.	Обучающийся обнаружил знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справился с выполнением заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой дисциплины, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя.	продолжить обучение или приступить по		

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Семестр 4

Текущий контроль

1. Контрольная работа

Темы 1, 2

Билет 🗣 1

1. Чему равен эквивалент ортофосфорной кислоты в реакции

H3PO4 + Ca(OH)2 = CaHPO4 + 2H2O?

А 196; Б 98; В 49; Г 32,7; Д 16,3.

2. Какая соль образуется по реакции $2Fe(OH)3 + H2SO4 \rightarrow$. Написать уравнение реакции.

A Fe(OH)SO4; Fe2(SO4)3; Fe(OH)2]2SO4; Fe(HSO4)2.

3. Какова структура уровня с n=5 в атоме вольфрама?

A 5s25p65d4; Б 5s25p25d4; В 5s05p35d8; Г 5s05p35d55f3; Д 5s25p65d10.

4. Какова гибридизация Co3+ в соединении K3[CoF6]?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

Билет 🛭 2

- 1. Вычислите эквивалент кислоты, если 6 г кислоты содержит 0,1 г водорода, способного замещаться на металл? А 1/60; Б 1/6; В 6; Г 40; Д 60.
- 2. Какая соль образуется по реакции $AI(OH)3 + 3H3PO4 \rightarrow$. Напишите уравнение реакции.

A [Al(OH)]3(PO4)2; Б Al2(PO4)3; В [Al(OH)2]3PO4; Г Al(H2PO4)3; Д Al2(HPO4)3.

- 3. Сколько электронов находится на 4f-подуровне атома лантана? А 0; Б 1; В 7; Г 9; Д 11.
- 4. Какова гибридизация Fe3+ в соединении H[FeCl4]?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

Билет • 3

- 1. Чему равен эквивалент серы в соединении, содержащем 50% серы и 50% кислорода?
- А 32; Б 16; В 8; Г 6,4; Д 64.
- 2. На скольких главных энергетических уровнях распределены электроны у атома тантала?

А 5; Б 6; В 7; Г 8; Д 9.

3. Какова гибридизация атома S в соединении SF6, если угол между связями равен 900 и 1800?

А нет гибридизации; Б sp; В sp2; Г sp3; Д sp3d2.

4. Какая энергия связи (кДж) относится к молекуле N2 среди молекул F2, O2, N2, C2, B2?

А 151; Б 265; В 500; Г 660; Д 949.

Билет • 4

1. Чему равен эквивалент Al2(SO4)3 ?

А 342/2; Б 342/3; В 342/(2·3); Г 342·2; Д 342·3.

2. Сколько электронов находится на 5d-подуровне атома золота?

А 2; Б 6; В 8; Г 10; Д 4.

3. Каков тип гибридизации углерода в молекуле углекислого газа?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

4. Скорость реакции второго порядка 4.5?10-2 моль/л?с при концентрации одного реагента 1.5?10-2 и другого 2.5?10-1 моль/л. Рассчитайте константу скорости реакции.

А 12 л/моль? с; Б 12 л/моль; В 12 с-1; Г 24 л/моль; Д 24 с-1.

Билет ♦ 5

- 1. Чему равна эквивалентная масса никеля, если 16,25 г цинка замещают 14,75г никеля в его соли? Эквивалентная масса цинка равна 32,5. А 14,25/16,25; Б 29,5; В 59; Г 118.
- 2. Какова структура уровня с n=4 атома молибдена?

A 4s24p44d7; Б 4s24p64d5; В 4s24p64d4; Г 4s04p44d5; Д 4s24p64d6.

3. Чему равна ковалентность азота в ионе [NH4]+?

А 1; Б 2; В 3; Г 4; Д 5.

4. Во сколько раз станет больше скорость прямой реакции по сравнению со скоростью обратной реакции в системе 2SO3 02 + 2SO2 при разбавлении реагирующей смеси инертным газом в 3 раза?

А 1/3; Б 3; В 9; Г 1/27; Д 27.

Билет • 6

1. Вычислите эквивалент основной соли Fe(OH)2Cl в реакции

Fe(OH)2CI + HCI = Fe(OH)CI2 + H2O?

A 125,5/36,5; Б 125,5; B 125,5*2; Γ 125,5/2.

2. Какова структура уровня с n=6 атома платины?

A 6s2p6; Б 6s1; В 6s2; Г 6s2p4; Д 6s2p8.

3. Каков угол между связями в молекуле H2O?

А 450; Б 1040; В 1090; Г 1200; Д 1800.

4. Сколько неспаренных электронов содержит воэбужденный атом Mn?

А 0; Б 1; В 2; Г 5; Д 7.

Билет 🕈 7

- 1. Чему равен эквивалент железа в оксиде железа (III), если известно, что 80 г Fe2O3 содержит 56 г железа? А 56/2; Б 56/80; В 56/24; Г 56/3; Д 56/(2·3).
- 2. Сколько электронов находится на 4f-подуровне атома рения?

А 2; Б 6; В 8; Г 10; Д 14.

3. Какова гибридизация Co3+ в соединении K3[CoF6]?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

4. Между молекулами каких веществ возможно образование межмолекулярной водородной связи?

А HF: Б H2O: В NH3: Г H2S: Д HJ.

Билет ♦ 8

1. Определите плотность (г/л) смеси, содержащей 60 мол.% N2 и 40 мол.% H2.

A (0.6.28 + 0.4.2)/22.4; E(0.6.28 + 0.4.2); E(0.6.28.0.4.2)/(0.6.28 + 0.4.2).

2. На скольких главных энергетических уровнях распределены электроны у атома никеля?

А 2; Б 3; В 4; Г 7; Д 8.

3. Какова гибридизация кремния в молекуле SiH4?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3.

4. Поясните изменение длины связи в ряду галогеноводородов: H?F, H?Cl, H?Br, H?J.

А не изменяется; Б 🛛; В 🗓.

Билет 🛭 9

1. Вычислите молекулярную массу (в г) газа, если плотность его при 270С и 304 кПа равна 2,1 г/л.

A (304.103)/(2.1.8.314.300); E (2.1.10-3.8.314.300)/304000; B (2.1.8.314.27)/304;

 Γ (8,314·300·2,1)/304.

2. Какова структура уровня с n=4 атома золота?

A 4s24p64d104f14; Б 4s24p64d104f0; Β 4s24p64d04f0; Γ 4s24p64d104f7; Д 4s24p64d54f7.

- 3. Укажите тип гибридизации орбиталей Se в молекуле H2Se, если угол между связями равен 900. А нет гибридизации; Б sp; B sp2; Г sp3; Д d2sp3.
- 4. В молекулах каких веществ, F2, Cl2, BCl3, CO2, CF4, N2, N2O3, SO3, образуются только σ-связи?

A F2, Cl2, BCl3, CF4; δ N2, N2O3, SO3; B BCl3, CO2, CF4; Γ Cl2, BCl3, CO2, CF4.

Билет 10

1. Определите эквивалент кадмия, если известно, что при растворении 10 г Cd в соляной кислоте по реакции Cd +2HCl = CdCl2 + H2 выделяется 2 л H2 при н.у.

2. Сколько электронов находится на 5d-подуровне атома свинца?

А 2; Б 6; В 8; Г 10; Д 14.

3. В какой молекуле - BF3 или NH3 значение дипольного момента больше?

А у BF3; Б у NH3; В приблизительно равны.

4. Какова кратность связи в молекуле СО (метод ВС)?

А 1; Б 1,5; В 2; Г 2,5; Д 3.

2. Контрольная работа

Темы 3. 4

Билет 😵 1

1. В системе установилось равновесие 2О3 ☐ 3О2 , ☐Н=290 кДж/моль. В какую сторону оно сместится при понижении температуры?

A не сместится; Б 🛛 ; В 🗓 .

2. Каков знак 🛛 G таяния льда при 263 K:

A []G>0; Б []G=0; В []G<0;?

3. Предполагая диссоциацию полной, определите, при какой температуре будет кипеть раствор, содержащий 10 г BaCl2 в 500 мл воды (E=0.52; tкип(H2O)=1000C).

A 10·(1000/500)·0,52+100; B 10·(100/500)·0,52+100; B (10/208)·(1000/500)·0,52+100;

 Γ 3·(10/208)·(1000/500)·0,52+100; Π Π (10/208)·(800/1000)·0,52+100.

4. В 10 л раствора содержится 36,5 г НСІ. Вычислите рОН раствора.

A 14; Б 13; В 10; Г □lg(36,5)+14; Д lg(36,5/10) □14.

5. Смешаны 400 мл 1,2 н раствора NaOH и 600 мл 1,8 н раствора NaOH. Чему равна нормальность полученного раствора?

А 1,56; В 3,12; Г 0,78; Д 0,39.

Билет • 2

1. Определите молекулярную массу и формулу соединения, содержащего 30.13% азота и 69.87% кислорода. Плотность по гелию равна 23.

A N2O4; Б NO2; В N2O3; Г 46; Д 76; Е 92.

2. В системе установилось равновесие $CO2(\Gamma) + H2O(\pi)$ \square H2CO3(p-p). В какую сторону оно сместится при понижении давления?

A не сместится; Б 🛛 ; В 🗓.

3. В каком из следующих случаев реакция неосуществима при любых температурах:

A []H<0, []S>0; δ []H<0, []S<0; Β []H>0, []S>0; Γ []H>0, []S<0;

4. Имеются два раствора: 1-ый раствор - 18,8 г фенола С6Н5ОН в 500 г этилового спирта; 2-ой раствор - 27,8 г нитрофенола НОС6Н4NO2 в 500 г этилового спирта. Какой раствор будет кипеть при более высокой температуре?

А 1-ый; Б 2-ой; В температуры кипения одинаковы.

5. Концентрация слабой кислоты увеличивается в 100 раз. Во сколько раз увеличится (уменьшится) степень диссоциации кислоты?

А 🛮 в 100 раз; Б 🗓 в 10 раз; В 🗓 в 10 раз; Г 🗓 в 100 раз; Д не изменится.

Билет • 3

1. Вычислите константу равновесия обратимой реакции $2SO2(\Gamma) + O2(\Gamma)$ \square $2SO3(\Gamma)$, если равновесная концентрация [SO3] = 0,04моль/л, а исходные концентрации веществ SO2 и O2 равны 1 моль/л и 0,8 моль/л соответственно.

A 2,2·10-3; \Box 5; \Box 2,2·10-4; \Box 2,1·10-5; \Box 5,3·10-2.

2. Исходя из знака \Box G0 реакций: PbO2(к) + Pb(к) = 2PbO(к), \Box G0<0 и SnO2(к) + Sn(к) = 2SnO(к), \Box G0>0 - сделать вывод о том, какие степени окисления более характерны для свинца и олова.

A Pb(II) и Sn(II); Б Pb(II) и Sn(IV); В Pb(IV) и Sn(II); Г Pb(IV) и Sn(IV).

3. Какова мольная доля четыреххлористого углерода ССІ4 в растворе, содержащем 308 г ССІ4 и 776 г дихлорэтана C2H4Cl2 (растворителя)?

А 0,2; Б 2/8; В 308/776; Г308/(776+308), Д 776/308.

4. Смешиваются равные объемы 0,02 М HBr и 0,04 М NaOH. Вычислите рН полученного раствора.

А 2; Б 4; В 14; Г 13; Д 12.

5. Вычислите рОН 0,01 н. раствора соли, образованной одноосновной слабой кислотой и однокислотным сильным основанием, если Кдисс. слабой кислоты равна 10-4.

А 3; Б 4; В 5; Г 6; Д 7.

Билет 🕏 4

1. В системе установилось равновесие Cr2O3(k) + 2AI(k) \square Al2O3(k) + 2Cr(k). В какую сторону оно сместится при повышении давления?

А не сместится; Б 🛛 ; В 🗓.

2. Учитывая, что NO2(г) окрашен, а N2O4(г) - бесцветен, и, исходя из знака изменения энтропии в реакции 2NO2(г) ☐ N2O4(г) , предсказать, как изменится окраска в системе с ростом температуры:

А усилится; Б ослабеет; В не изменится.

3. Какой раствор обладает большим осмотическим давлением: содержащий в 1л бензола 10 г толуола С7Н8 (I), или в 1л бензола 10 г ксилола С8Н10 (II)?

А І: Б ІІ: В одинаковое Росм.

4. Смешиваются равные объемы 0,03 М HNO3 и 0,05 М КОН. Вычислите рН полученного раствора.

A \Box Ig(2·10-2); Б 2; В 12; Γ \Box Ig(8·10-2); Π \Box Ig(0.03·0.05).

5. Растворимость соли А2В равны 10-6 моль/л. Вычислите ПР.

А 1·10-6; Б 1·10-12; В 1·10-18; Г 2·10-18; Д 4·10-18.

Билет 🍪 5

1. В системе установилось равновесие $CO2(\Gamma)+C(\kappa)$ \square 2CO(Γ), \square H=173 кДж/моль. В какую сторону оно сместится при понижении температуры?

A не сместится; Б 🛛; В 🗓.

2. Указать, для каких из реакций образования оксидов азота существует принципиальная возможность самопроизвольного протекания:

3. т г вещества (неэлектролита), имеющего молекулярную массу М, растворено в G г растворителя, имеющего эбулиоскопическую постоянную Е. Каково повышение температуры кипения раствора?

A $(G\cdot m\cdot 1000)/(E\cdot M)$; $E\cdot m\cdot G)/(M\cdot 1000)$; $E\cdot M\cdot G)/(m\cdot 1000)$; $E\cdot M\cdot 1000)/(m\cdot G)$;

Д (E·m·1000)/(M·G).

4. Ионное произведение воды равно 10-14. Определите константу диссоциации воды (Н2О 🛚 Н+ + ОН-).

A 10-14(1000/18); E 10-14; E 10-14(18/1000); E 10-7.

5. Вычислите pH раствора азотной кислоты (ω =0.063%). Плотность раствора и степень диссоциации HNO3 считать равными единице.

А 1; Б 2; В 3; Г 4; Д 5.

Билет ♦ 6

1. Во сколько раз возрастет скорость газофазной реакции 2X3 ☐ 3X2 при увеличении давления X3 в 3 раза? А 2: Б 3: В 9: Г 8: Д 18.

2. В системе установилось равновесие NH3(r) + H2O(ж) \square NH4OH(p). Как изменится концентрация NH4OH(p) при уменьшении давления NH3 в два раза?

А не сместится; Б 🛛 в 2 раза; В 🗓 в 2 раза.

3. Для следующих реакций: $H2(\Gamma) + O(\Gamma) = H2O(\Gamma)$ (1), $H2(\Gamma) + 1/2O2(\Gamma) = H2O(\Gamma)$ (2), $2H(\Gamma) + O(\Gamma) = H2O(\Gamma)$ (3) указать правильное соотношение стандартных изменений энтальпии:

A $\Box H20 < \Box H10 < \Box H30$; 5 $\Box H20 > \Box H10 > \Box H30$; B $\Box H10 \Box \Box H30 > \Box H20$; $\Box \Box H10 \Box \Box H30 < \Box H20$.

4. Какова мольная доля бензойной кислоты (C6H5COOH) в растворе, содержащем 488 г бензойной кислоты и 276 г этилового спирта (C2H5OH)?

A 488/276; Б 488/(276+488); В 0,4; Γ 0.6; Д 4.

5. Как изменится степень диссоциации слабой кислоты при разбавлении раствора в 4 раза?

А [] в 4 раза; Б [] в 2 раза; В [] в 2 раза; Г не изменится; Д [] в 4 раза.

Билет � 7

1. Как изменится скорость реакции 2NO(r) + O2(r) 2NO2(r) при одновременном уменьшении концентрации NO и O2 в 2 pasa?

А 🛮 в 2 раза; Б 🗓 в 2 раза; В 🗓 в 24 раза; Г 🗓 в 24 раза; Д 🗓 в 8 раз.

2. В какую сторону сместится равновесие системы N2 + 3H2 ☐ 2NH3 при повышении давления?

А не сместится; Б в сторону N2 и H2; В в сторону NH3.

- 3. Указать, какие из нижеследующих утверждений правильны: А эндотермические реакции не могут протекать самопроизвольно; Б эндотермические реакции могут протекать при достаточно высоких температурах, если изменение энтропии реакции положительно; В эндотермические реакции могут протекать при достаточно низких температурах.
- 4. Определите, какое вещество при растворении 2 г в 200 г этилового эфира (E=2; tкип=34,50C) повысит температуру кипения до 34,650C?

A NaBr; Б KCl; B Lil; Г NaCl; Д LiBr.

5. ПР(PbS) = 1·10-29. Вычислите растворимость соли (моль/л).

А 1·10-29; Б 3·10-15; В 3·10-14; Г 1·10-15; Д 3·10-28.

Билет ♦ 8

1. Для реакции X + Y = Z при Cx=2 моль/л и Cy=1 моль/л скорость реакции равна 0,30 моль/(л·час). Вычислите константу скорости.

А 0,15; Б 0,4; В 0,6; Г 0,4; Д 0,9.

2. В системе установилось равновесие 2СО2 ☐ 2СО + О2, ☐ Н=563 кДж/моль. В какую сторону оно сместится при повышении температуры?

A не сместится; Б 🛛 ; В 🗓 .

3. В каком из следующих случаев реакция возможна при любых температурах:

A []H<0, []S>0; δ []H<0, []S<0; Β []H>0, []S>0; Γ []H>0, []S<0;

4. m г неэлектролита растворено в G г растворителя, имеющего криоскопическую постоянную К. Какова молекулярная масса M растворенного вещества?

A $(K \cdot m)/([]t \cdot G)$; $E([]t \cdot G)/(K \cdot m)$; $E(K \cdot G)/([]t \cdot m \cdot 1000)$; $E(K \cdot m \cdot G)/([]t \cdot 1000)$;

Д (K·m·1000)/([]t·G).

5. Раствор содержит 0,01 моля H2CO3 и столько же HCl в 1 л раствора. Чему равна концентрация ионов водорода (моль/л)?

A 0,01; \Box 0,02; \Box 0,03; \Box 0,06.

Билет ♦ 9

- 1. Во сколько раз станет больше скорость прямой реакции по сравнению со скоростью обратной реакции в системе 2NO + O2 = 2NO2 при увеличении давления в системе в 10 раз? А 10; Б 102; В 103; Г 104; Д 105.
- 2. В какую сторону сместится равновесие в системе H2 + Cl2 \square 2HCl при понижении давления? А не сместится; Б в сторону H2 и Cl2; В в сторону HCl.
- 3. Не производя вычислений, указать, для каких процессов [S>0:

A MgO(k)+H2(Γ)=Mg(k) + H2O(\times); $\int C(\kappa)+CO2(\Gamma)=2CO(\Gamma)$; $\int C(\kappa)+CO2(\Gamma)$; $\int C$

 Γ NH4NO3(k)=N2O(Γ)+ 2H2O(Γ).

4. Какой из растворов обладает большим осмотическим давлением: 1-ый раствор - в 1 л ацетона 15 г стирола C6H5CH=CH2; 2-ой раствор - в 1 л ацетона 15 г тетраэтилсвинца Pb(C2H5)4?

А 1-ый; Б 2-ой; В оба раствора имеют одинаковое Росм.

5. Смешиваются равные объемы 0,06 M Ba(OH)2, 0,03 M HNO3 и 0,03 M H2SO4. Вычислите pH полученного раствора.

A 🛮 lg(3·10-2); Б 🗓 lg10-2; В 🗓 lg10-11; Г 🗘 lg(3·10🖟 11); Д 🗘 lg10-12.

Билет ♦ 10

1. Две реакции при 300С протекают с одинаковой скоростью (u1= u2). Температурный коэффициент первой реакции равен 4, второй - 3. Каково будет отношение u1/ u2 при 500С?

А 3/4; Б 9/16; В 27/64; Г 16/9; Д 64/27.

2. В системе установилось равновесие Fe3O4(k) + CO(Γ) \square 3FeO(k) + CO2(Γ). В какую сторону оно сместиться при повышении давления?

A не сместится; Б []; В [].

3. Если ПH<0 и ПS<0. то в каком случае реакция может протекать самопроизвольно:

A | DH | > |TDS |; B | DH | < |TDS |; B | DH | = |TDS |?

4. Какова мольная доля пиридина С5Н5N в растворе, содержащем 237 г вещества и 126 мл воды?

A 237/(126+237): Б 237/126: B 0.3: Γ 3/7.

5. Раствор содержит 0,01 молей NaOH и то же количество молей NH4OH в 0,5 л раствора. Чему равна концентрация ионов гидроксила OH (моль/л)?

А 0,01; Б 0,02; В 0,04; Г 12,3; Д 1,7.

3. Контрольная работа

Темы 5, 6

Билет ♦ 1

- 1. Назвать комплексное соединение [CoF3(H2O)3].
- 2. Указать координационное число и степень окисления центрального иона.
- 3. Сколько ступенчатых констант нестойкости можно написать для указанного комплексного соединения?
- 4. Какая гибридизация комплексообразователя проявляется при образовании комплексного соединения? Каково его пространственное строение?
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $CuFeS2 + HNO3 \rightarrow Cu(NO3)2 + Fe(NO3)3 + H2SO4 + NO + ?$

 $(NH4)2Cr2O7 \rightarrow Cr2O3 + N2 + ?$

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет ♦ 2

- 1. Написать формулу комплексного соединения тетрахлородиаммин платины.
- 2. Схематически представить пространственную структуру двух изомеров указанного комплексного соединения.
- 3. Указать степень окисления и координационное число комплексообразователя.
- 4. Написать выражение для константы нестойкости одной из ступеней диссоциации комплексного соединения.
- 5. Уравнять и указать тип окислительно-восстановительных реакций:
- P + KOH + ? → KH2PO2 + PH3

FeSO4 + H2O2 + H2SO4 → Fe2(SO4)3 + ?

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет � 3

- 1. Назвать комплексное соединение K3[FeF6].
- 2. Указать координационное число, степень окисления центрального иона и заряд комплексного иона.
- 3. Написать уравнение полной диссоциации в растворе и выражение для константы устойчивости комплексного иона.
- 4. Какая гибридизация проявляется у комплексообразователя при образовании комплексного иона? Каково его пространственное строение?
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $KCIO3 + HCI \rightarrow KCI + CI2 + ?$

Te + KOH \rightarrow K2TeO3 + K2Te + ?

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет 🗣 4

- 1. Написать формулу комплексного соединения сульфата бромопентаамминкобальта(III).
- 2. Указать координационное число, степень окисления центрального иона и заряд комплексного иона.
- 3. Какой тип изомерии характерен для указанного соединения?
- 4. Какой осадок образуется при взаимодействии нитрата серебра с раствором изомера указанного комплексного соединения?
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $K2Cr2O7 + HCI \rightarrow CrCl3 + KCI + Cl2 + ?$

 $CH2O + KMnO4 + H2SO4 \rightarrow HCOOH + MnSO4 + ?$

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет ♦ 5

- 1. Назвать комплексное соединение [Co(H2O)2(NH3)4]Cl3.
- 2. Указать степень окисления, координационное число центрального иона и заряд комплексного иона.
- 3. Сколько ступенчатых констант нестойкости можно написать для указанного комплексного соединения.
- 4. Какая гибридизация комплексообразователя проявляется при образовании комплексного соединения? Каково его пространственное строение?
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $Cu2O + HNO3 \rightarrow Cu(NO3)2 + NO + ?$

KMnO4 + HCI → MnCl2 + Cl2 + KCl + ?

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет • 6

- 1. Написать формулу комплексного соединения дигидроксотетрахлороплатина(IV) аммония.
- 2. Указать координационное число, степень окисления центрального иона и заряд комплексного иона.
- 3. Какой тип изомерии характерен для указанного соединения? Схематически представить пространственную структуру двух изомеров указанного комплексного соединения.
- 4. С помощью метода ВС изобразить электронную конфигурацию комплексообразователя и указать тип гибридизации его орбиталей.
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $KMnO4 + HBr \rightarrow MnBr2 + Br2 + KBr + ?$

NaAsO2 + J2 + NaOH → Na3AsO4 + NaJ + ?

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет ♦ 7

- 1. Назвать комплексное соединение Na2[Fe(CN)5(NH3)].
- 2. Указать степень окисления, координационное число центрального иона и заряд комплексного иона.
- 3. Почему при добавлении раствора KCNS к раствору указанного комплексного соединения не наблюдается окраски, характерной для Fe(CNS)3?
- 4. С помощью метода ВС изобразить электронную конфигурацию комплексообразователя и указать тип гибридизации его орбиталей.
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $K2Cr2O7 + H2SO4 + KJ \rightarrow Cr2(SO4)3 + J2 + K2SO4 + ?$

Sb + HNO3 \rightarrow HSbO3 + NO2 + ?

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет � 8

- 1. Написать формулу комплексного соединения гексаамминкобальта(III) гексанитрохромата(III).
- 2. Указать координационное число, степень окисления центрального иона и заряд комплексного иона.
- 3. Какой тип изомерии характерен для указанного соединения?
- 4. Сколько ступенчатых констант устойчивости можно написать для каждого комплексного иона?
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $CuS + HNO3 \rightarrow Cu(NO3)2 + S + NO2 + ?$

J2 + H2O2 → HJO3 + H2O

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билот 🛊 0

- 1. Назвать комплексное соединение [Co(NO2)3(NH3)3]
- 2. Какой тип изомерии характерен для указанного соединения?
- 3. Написать уравнения ступенчатой диссоциации указанного комплексного соединения в растворе.
- 4. С помощью метода ВС изобразить электронную конфигурацию комплексообразователя и указать тип гибридизации его орбиталей.
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $MnO2 + O2 + KOH \rightarrow K2MnO4 + H2O$

 $Zn + H3AsO3 + H2SO4 \rightarrow H3As + ZnSO4 + ?$

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Билет • 10

- 1. Написать формулу комплексного соединения тетраиододиамминплатины.
- 2. Указать координационное число, степень окисления комплексообразователя.
- 3. Какой тип изомерии характерен для указанного соединения? Схематически представить пространственную структуру двух изомеров указанного комплексного соединения.
- 4. Написать уравнение полной диссоциации указанного комплексного соединения и выражение для константы нестойкости.
- 5. Уравнять и указать тип окислительно-восстановительных реакций:

 $Cu2O + HNO3 \rightarrow Cu(NO3)2 + NO + ?$

 $Pb(NO3)2 \rightarrow PbO + NO2 + O2$

Рассчитать эквивалентную массу окислителя и восстановителя в реакциях.

Экзамен

Вопросы к экзамену:

Билет ♦ 1

1. Чему равен эквивалент ортофосфорной кислоты в реакции

H3PO4 + Ca(OH)2 = CaHPO4 + 2H2O?

А 196; Б 98; В 49; Г 32,7; Д 16,3.

2. Какая соль образуется по реакции 2Fe(OH)3 + H2SO4 →. Написать уравнение реакции.

A Fe(OH)SO4; β Fe2(SO4)3; B [Fe(OH)2]2SO4; Γ Fe(HSO4)2.

3. Какова структура уровня с n=5 в атоме вольфрама?

A 5s25p65d4; Б 5s25p25d4; В 5s05p35d8; Г 5s05p35d55f3; Д 5s25p65d10.

4. Какова гибридизация Co3+ в соединении K3[CoF6]?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

5. В системе установилось равновесие 2О3 \square 3О2 , \square H=290 кДж/моль. В какую сторону оно сместится при понижении температуры?

A не сместится; Б 🛛 ; В 🗓 .

6. Каков знак ☐G таяния льда при 263 К:

A []G>0; Б []G=0; В []G<0;?

7. Предполагая диссоциацию полной, определите, при какой температуре будет кипеть раствор, содержащий 10 г BaCl2 в 500 мл воды (E=0.52; tкип(H2O)=1000C).

A 10·(1000/500)·0,52+100; E 10·(100/500)·0,52+100; B (10/208)·(1000/500)·0,52+100;

 Γ 3·(10/208)·(1000/500)·0,52+100; Π 1 (10/208)·(800/1000)·0,52+100.

8. В 10 л раствора содержится 36,5 г HCl. Вычислите рОН раствора.

A 14; Б 13; В 10; $\Gamma \square \lg(36,5)+14$; Д $\lg(36,5/10) \square 14$.

9. Смешаны 400 мл 1,2 н раствора NaOH и 600 мл 1,8 н раствора NaOH. Чему равна нормальность полученного раствора?

А 1,56; В 3,12; Г 0,78; Д 0,39.

10. Чему равно координационное число комплексообразователя в комплексной соли Ba[Ni(C2O4)2(NH3)2] ? A 2; Б 4; В 6; Г 8; Д 10.

11. Кдисс.слабой одноосновной кислоты равна 10-5. Вычислите рН 0,1 н. раствора этой кислоты.

А 1; Б 6; В 3; Г 8; Д 4.

12. Вычислите ЭДС гальванического элемента состоящего из Fe-электрода, погруженного в 0,01 M раствор Fe(NO3)2 и Ag-электрода, погруженного в 0,001 M раствор AgNO3. E0(Fe2+/Fe) = 10,44B; E0(Ag+/Ag) = +0,80B. A +0,242; Б +1,122; В 11,122; Г - 10,242; Д +1,476.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы

 $P + KOH + ? \rightarrow KH2PO2 + PH3$

- 1) Сколько молекул КОН участвует в реакции? А 1; Б 2; В 3; Г 4; Д 5.
- 2) Сколько молекул H2O участвует в реакции? А 1; Б 2; В 3; Г 4; Д 5.
- 3) Чему равен эквивалент окислителя? А 31; Б 31/2; В 31/3; Г 31·2; Д 31·3.

Билет ♦ 2

- 1. Вычислите эквивалент кислоты, если 6 г кислоты содержит 0,1 г водорода, способного замещаться на металл? А 1/60: Б 1/6: В 6: Г 40: Д 60.
- 2. Какая соль образуется по реакции АІ(ОН)3 + 3Н3РО4 →. Напишите уравнение реакции.
- A [AI(OH)]3(PO4)2; Б AI2(PO4)3; В [AI(OH)2]3PO4; Г AI(H2PO4)3; Д AI2(HPO4)3.
- 3. Сколько электронов находится на 4f-подуровне атома лантана? А 0; Б 1; В 7; Г 9; Д 11.
- 4. Какова гибридизация Fe3+ в соединении H[FeCl4]?
- А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.
- 5. Определите молекулярную массу и формулу соединения, содержащего 30.13% азота и 69.87% кислорода. Плотность по гелию равна 23.
- A N2O4; Б NO2; В N2O3; Г 46; Д 76; Е 92.
- 6. В системе установилось равновесие $CO2(\Gamma) + H2O(\pi)$ | H2CO3(p-p) . В какую сторону оно сместится при понижении давления?
- A не сместится; Б [] ; В [].
- 7. В каком из следующих случаев реакция неосуществима при любых температурах:
- A []H<0, []S>0; δ []H<0, []S<0; Β []H>0, []S>0; Γ []H>0, []S<0;
- 8. Имеются два раствора: 1-ый раствор 18,8 г фенола С6Н5ОН в 500 г этилового спирта; 2-ой раствор 27,8 г нитрофенола НОС6Н4NO2 в 500 г этилового спирта. Какой раствор будет кипеть при более высокой температуре?
- А 1-ый; Б 2-ой; В температуры кипения одинаковы.
- 9. Концентрация слабой кислоты увеличивается в 100 раз. Во сколько раз увеличится (уменьшится) степень диссоциации кислоты?
- А [] в 100 раз; Б [] в 10 раз; В [] в 10 раз; Г [] в 100 раз; Д не изменится.
- 10. Запишите выражение для Кнест. комплекса [Cu(NH3)2]Cl.
- A [Cu+][NH3]2/[Cu(NH3)2+]; Ε {[Cu+][NH3]2[Cl]]}/[Cu(NH3)2Cl]; Β [Cu+][NH3]/[Cu(NH3)+];
- $\Gamma \{ [Cu(NH3)+][NH3] \} / [Cu(NH3)2+]; \ \mathcal{L} [Cu(NH3)2+] / \{ [Cu(NH3)+][NH3] \}.$
- 11. Кдисс.слабой одноосновной кислоты равна 10-4. Вычислите рН 0,01 н. раствора этой кислоты.
- А 3; Б 4; В 5; Г 6; Д 7.
- 12. Вычислите ЭДС гальванического элемента состоящего из Ni-электрода, погруженного в 0,01 M раствор NiCl2 и Au-электрода, погруженного в 5*10 $^{\circ}$ 4 M раствор Au2(SO4)3. E0(Au3+/Au) = +1,50B; E0(Ni2+/Ni) = $^{\circ}$ 0,23B. A +1,730; Б $^{\circ}$ 1,730; В $^{\circ}$ 1,152; $^{\circ}$ 7 +1,152; $^{\circ}$ 7 +1,818.
- 13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы
- $CuFeS2 + HNO3 \rightarrow Cu(NO3)2 + Fe(NO3)3 + H2SO4 + NO + ?$
- 1) Сколько молекул HNO3 участвует в реакции? A 4; Б 8; В 14; Г 20; Д 32.
- 2) Сколько воды образуется? А 1; Б 3; В 5; Г 8; Д 10.
- 3) Чему равен эквивалент окислителя? А 152/2; Б 63:2; В 63; Г 152; Д 63/3.

Билет 🕏 3

- 1. Чему равен эквивалент серы в соединении, содержащем 50% серы и 50% кислорода?
- А 32; Б 16; В 8; Г 6,4; Д 64.
- 2. На скольких главных энергетических уровнях распределены электроны у атома тантала?
- А 5; Б 6; В 7; Г 8; Д 9.
- 3. Какова гибридизация атома S в соединении SF6, если угол между связями равен 900 и 1800?
- А нет гибридизации; Б sp; В sp2; Г sp3; Д sp3d2.
- 4. Какая энергия связи (кДж) относится к молекуле N2 среди молекул F2, O2, N2, C2, B2?
- А 151: Б 265: В 500: Г 660: Д 949.
- 5. Вычислите константу равновесия обратимой реакции 2SO2(г) + O2(г) ☐ 2SO3(г), если равновесная концентрация [SO3] =0,04моль/л, а исходные концентрации веществ SO2 и O2 равны 1 моль/л и 0,8 моль/л соответственно.
- A 2,2·10-3; \Box 5; \Box 2,2·10-4; \Box 2,1·10-5; \Box 5,3·10-2.
- 6. Исходя из знака \Box G0 реакций: PbO2(к) + Pb(к) = 2PbO(к), \Box GO<0 и SnO2(к) + Sn(к) = 2SnO(к), \Box GO>0 сделать вывод о том, какие степени окисления более характерны для свинца и олова.
- A Pb(II) и Sn(II); Б Pb(II) и Sn(IV); В Pb(IV) и Sn(II); Γ Pb(IV) и Sn(IV).
- 7. Какова мольная доля четыреххлористого углерода CCl4 в растворе, содержащем 308 г CCl4 и 776 г дихлорэтана C2H4Cl2 (растворителя)?
- А 0,2; Б 2/8; В 308/776; Г308/(776+308), Д 776/308.
- 8. Смешиваются равные объемы 0,02 М HBr и 0,04 М NaOH. Вычислите рН полученного раствора.
- А 2; Б 4; В 14; Г 13; Д 12.
- 9. Вычислите концентрацию ионов кадмия в 0.1 M растворе [Cd(NH3)4]SO4. Кн([Cd(NH3)4]2+) =7.56·10⁻⁸.
- A \Box (2,95·10-11)1/5; \Box \Box (2,95·10-11)1/4; B \Box (2,95·10-11)1/3; \Box \Box (5,9·10-11)1/5; \Box \Box (5,9·10-11)1/4.
- 10. Вычислите рОН 0,01 н. раствора соли, образованной одноосновной слабой кислотой и однокислотным сильным основанием, если Кдисс. слабой кислоты равна 10-4.
- А 3; Б 4; В 5; Г 6; Д 7.

11. Какая гибридизация проявляется у комплексообразователя при образовании комплексного иона [FeF6]3-? Каково его пространственное строение?

A sp; Б sp2; В sp3; Γ sp3d2; Λ тетраэдр; Е октаэдр.

12. Вычислите ЭДС гальванического элемента состоящего из Cr-электрода, погруженного в 0,001 M раствор CrCl3 и Pd-электрода, погруженного в 0,01 M раствор PdCl2. E0(Cr3+/Cr) = 10.74B; E0(Pd2+/Pd) = +0,99B.

A +1,730; Б \Box 1,730; В +0,132.; Г \Box 0;132; Д +1.848.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы:

KMnO4 + C2H2 + H2SO4 [] MnSO4 + CO2 + ?

- 1) Сколько молекул КМпО4 в реакции? А 2; Б 4; В 5; Г 8; Д 10.
- 2) Сколько молекул СО2 образуется? А 2; Б 4; В 5; Г 8; Д 10.
- 3) Чему равен эквивалент восстановителя? А 26/5; Б 26/10; В 158/5; Г 26; Д 26/2.

Билет ♦ 4

1. Чему равен эквивалент Al2(SO4)3 ?

А 342/2; Б 342/3; В 342/(2·3); Г 342·2; Д 342·3.

2. Сколько электронов находится на 5d-подуровне атома золота?

А 2; Б 6; В 8; Г 10; Д 4.

3. Каков тип гибридизации углерода в молекуле углекислого газа?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

4. Скорость реакции второго порядка 4.5?10-2 моль/л?с при концентрации одного реагента 1.5?10-2 и другого 2.5?10-1 моль/л. Рассчитайте константу скорости реакции.

А 12 л/моль?с; Б 12 л/моль; В 12 с-1; Г 24 л/моль; Д 24 с-1.

5. В системе установилось равновесие Cr2O3(k) + 2AI(k) \square Al2O3(k) + 2Cr(k). В какую сторону оно сместится при повышении давления?

A не сместится; Б \square ; В \square .

6. Учитывая, что NO2(г) окрашен, а N2O4(г) - бесцветен, и, исходя из знака изменения энтропии в реакции 2NO2(г) ☐ N2O4(г) , предсказать, как изменится окраска в системе с ростом температуры:

А усилится; Б ослабеет; В не изменится.

7. Какой раствор обладает большим осмотическим давлением: содержащий в 1л бензола 10 г толуола C7H8 (I), или в 1л бензола 10 г ксилола C8H10 (II)?

А I; Б II; В одинаковое Росм.

8. Смешиваются равные объемы 0,03 М HNO3 и 0,05 М КОН. Вычислите рН полученного раствора.

A \Box Ig(2·10-2); Б 2; В 12; Г \Box Ig(8·10-2); Д \Box Ig(0,03·0,05).

9. Какова концентрация комплексного иона [HgBr4]2- в 0,01 М растворе соли K2[HgBr4]?

A 0,01; Б 0,02; В (Куст.,4 \cdot 0,01)1/2; Г (Куст.,4 \cdot 0,01)1/2; Д (0,01/Куст.,4)1/2.

10. Растворимость соли А2В равны 10-6 моль/л. Вычислите ПР.

А 1·10-6; Б 1·10-12; В 1·10-18; Г 2·10-18; Д 4·10-18.

11. Концентрация каждого из комплексных ионов, [AgCl2] $^-$, [AgBr2] $^-$, в растворе соответствующей соли составляет 0.1 моль/л. В каком растворе концентрация галогенид-ионов наименьшая? Кн ([AgCl2] $^-$) =1.76·10 $^-$ 5, Кн ([AgBr2] $^-$) =7.8·10 $^-$ 8.

А [AgCl2]⁻; Б [AgBr2]⁻; В Концентрация одинаковая.

12. Вычислите ЭДС гальванического элемента состоящего из Pt-электрода, погруженного в 0,001 M раствор PtCl2 и Al-электрода, погруженного в 0,001 M раствор AlCl3. E0(Al3+/Al) = 1,66B; E0(Pt2+/Pt) = +1,20B.

А +0,637; Б 🛮 0,637; В +2,830; Г 🗓 2,830; Д +2,860.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы:

H2SO3 + HCIO3 | H2SO4 + HCI.

- 1) Сколько молекул HClO3 участвует в реакции? А 1; Б 2; В 3; Г 6; Д 0.
- 2) Сколько молекул воды образуется? А 1; Б 2; В 3; Г 6; Д 0.
- 3) Чему равен эквивалент восстановителя? А 82/2; Б 84,5/3; В 84,5/5; Г 84,5/6;

Д 82/6.

Билет ♦ 5

- 1. Чему равна эквивалентная масса никеля, если 16,25 г цинка замещают 14,75г никеля в его соли? Эквивалентная масса цинка равна 32,5. А 14,25/16,25; Б 29,5; В 59; Г 118.
- 2. Какова структура уровня с n=4 атома молибдена?

A 4s24p44d7; Б 4s24p64d5; В 4s24p64d4; Г 4s04p44d5; Д 4s24p64d6.

3. Чему равна ковалентность азота в ионе [NH4]+?

А 1; Б 2; В 3; Г 4; Д 5.

4. Во сколько раз станет больше скорость прямой реакции по сравнению со скоростью обратной реакции в системе 2SO3 \(\text{O2} + 2SO2 при разбавлении реагирующей смеси инертным газом в 3 раза?

А 1/3; Б 3; В 9; Г 1/27; Д 27.

5. В системе установилось равновесие $CO2(\Gamma)+C(\kappa)$ \square 2CO(Γ), \square H=173 кДж/моль. В какую сторону оно сместится при понижении температуры?

А не сместится; Б \Box ; В \Box .

6. Указать, для каких из реакций образования оксидов азота существует принципиальная возможность самопроизвольного протекания:

A $2N2(\Gamma) + O2(\Gamma) = 2N2O(\Gamma)$, $\boxed{1}H0>0$; $\boxed{5}$ $N2(\Gamma) + O2(\Gamma) = 2NO(\Gamma)$, $\boxed{1}H0>0$; $\boxed{6}$ B $2NO(\Gamma) + O2(\Gamma) = 2NO(R)$, $\boxed{1}H0<0$; $\boxed{7}$ $NO(\Gamma) + NO(\Gamma) = 2NO(R)$, $\boxed{1}H0<0$; $\boxed{7}$ $NO(\Gamma) + NO(\Gamma) = 2NO(R)$, $\boxed{1}H0>0$;

7. m г вещества (неэлектролита), имеющего молекулярную массу M, растворено в G г растворителя, имеющего эбулиоскопическую постоянную E. Каково повышение температуры кипения раствора?

A $(G\cdot m\cdot 1000)/(E\cdot M)$; $E\cdot m\cdot G)/(M\cdot 1000)$; $E\cdot M\cdot G)/(m\cdot 1000)$; $E\cdot M\cdot 1000)/(m\cdot G)$;

Д (E·m·1000)/(M·G).

8. Ионное произведение воды равно 10-14. Определите константу диссоциации воды (H2O 🛘 H+ + OH-).

- 9. Чему равно координационное число комплексообразователя в комплексной соли (NH4)2[Co(C2O4)2(H2O)2] ? A 2; Б 4; В 6; Г 8; Д 10.
- 10. Напишите выражение для полной константы устойчивости Пуст. комплексной соли [Cu(NH3)4]Cl2.

A [Cu2+][NH3]4[Cu(NH3)]-1; Б [Cu(NH3)4Cl2]/{[Cu2+][NH3]4[Cl]2};

B $[Cu(NH3)42+]/{[Cu2+][NH3]4}$; $\Gamma [Cu(NH3)42+]/{[Cu(NH3)32+][NH3]}$.

11. Вычислите pH раствора азотной кислоты (ω =0.063%). Плотность раствора и степень диссоциации HNO3 считать равными единице.

А 1: Б 2: В 3: Г 4: Д 5.

- 12. Вычислите ЭДС гальванического элемента состоящего из Pb-электрода, погруженного в 0,0001 M раствор Pb(SO4)2 и Fe-электрода, погруженного в 0,01 M раствор FeCl2. E0(Pb4+/Pb) = +0,84B; E0(Fe2+/Fe) = 0,44B. A +1,280; Б 1,280; В +0,282; 1,280; В 1,280; В +0,282; 1,280
- 13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы.

AI + KNO3 + KOH + ? [] KAIO2 + NH3.

- 1) Сколько молекул KNO3 участвует в реакции? А 1; Б 2; В 3; Г 4; Д 5.
- 2) Сколько молекул H2O участвует в реакции? А 0; Б 1; В 2; Г 3; Д 4.
- 3) Чему равен эквивалент восстановителя? А 27/3; Б 101/2; В 27/6; Γ 101/3; Д 101/4.

Билет • 6

1. Вычислите эквивалент основной соли Fe(OH)2CI в реакции

Fe(OH)2CI + HCI = Fe(OH)CI2 + H2O?

A 125,5/36,5; Ε 125,5; B 125,5*2; Γ 125,5/2.

2. Какова структура уровня с n=6 атома платины?

A 6s2p6; Б 6s1; В 6s2; Г 6s2p4; Д 6s2p8.

3. Каков угол между связями в молекуле Н2О?

А 450; Б 1040; В 1090; Г 1200; Д 1800.

4. Сколько неспаренных электронов содержит воэбужденный атом Mn?

А 0; Б 1; В 2; Г 5; Д 7.

- 5. Во сколько раз возрастет скорость газофазной реакции 2X3 \square 3X2 при увеличении давления X3 в 3 раза? А 2; Б 3; В 9; Γ 8; \square 18.
- 6. В системе установилось равновесие NH3(r) + H2O(ж) \square NH4OH(p). Как изменится концентрация NH4OH(p) при уменьшении давления NH3 в два раза?

А не сместится; Б 🛛 в 2 раза; В 🗓 в 2 раза.

- 7. Для следующих реакций: H2(r) + O(r) = H2O(r) (1), H2(r) + 1/2O2(r) = H2O(r) (2), 2H(r) + O(r) = H2O(r) (3) указать правильное соотношение стандартных изменений энтальпии:
- A $\Box H20 < \Box H10 < \Box H30$; 5 $\Box H20 > \Box H10 > \Box H30$; B $\Box H10 \Box \Box H30 > \Box H20$; $\Box \Box H10 \Box \Box H30 < \Box H20$.
- 8. Какова мольная доля бензойной кислоты (С6Н5СООН) в растворе, содержащем 488 г бензойной кислоты и 276 г этилового спирта (С2Н5ОН)?

А 488/276; Б 488/(276+488); В 0,4; Г 0.6; Д 4.

9. Как изменится степень диссоциации слабой кислоты при разбавлении раствора в 4 раза?

А [] в 4 раза; Б [] в 2 раза; В [] в 2 раза; [] не изменится; [] [] в 4 раза.

10. Запишите выражение для Кнест.1 комплексной соли [Cu(NH3)2]Cl.

A [Cu+][NH3]2/[Cu(NH3)2+]; E[Cu+][NH3]2[Cl-]]/[Cu(NH3)2Cl]; E[Cu+][NH3]/[Cu(NH3)+];

 $\Gamma \{ [Cu(NH3)+][NH3] \} / [Cu(NH3)2+] \}$ $\Pi \{ [Cu(NH3)2+] / \{ [Cu(NH3)+][NH3] \} \}$

11. Константа диссоциации слабого однокислотного основания равна Косн.=10-3. Вычислите рН раствора, содержащего 0,1 моль/л этого основания и 0,1 моль/л хлористой соли этого основания.

А 1; Б 3; В 4; Г 7; Д 11.

12. Вычислите ЭДС гальванического элемента состоящего из Cu-электрода, погруженного в 0,01 M раствор CuCl2 и Pb-электрода, погруженного в 0,01 M раствор PbCl2. E0(Cu2+/Cu) = +0,34B; E0(Pb2+/Pb) = 0,13B.

A +0.588; Б +0.092; В $\boxed{0.092}$; Г $\boxed{0.470}$; $\boxed{1}$ +0.470.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы:

KBr + H2SO4 DSO2 + Br2 + ?

- 1) Сколько молекул H2SO4 участвует в реакции? A 0; Б 1; В 2; Г 3; Д 4.
- 2) Сколько молекул воды образуется? А 1; Б 2; В 3; Г 4; Д 5.

3) Чему равен эквивалент окислителя? А 98.2; Б 98; В 98/2; Г 98/4; Д 119.

Билет � 7

- 1. Чему равен эквивалент железа в оксиде железа (III), если известно, что 80 г Fe2O3 содержит 56 г железа? А 56/2; Б 56/80; В 56/24; Г 56/3; Д 56/(2·3).
- 2. Сколько электронов находится на 4f-подуровне атома рения?

А 2; Б 6; В 8; Г 10; Д 14.

3. Какова гибридизация Co3+ в соединении K3[CoF6]?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3; Е sp3d2.

4. Между молекулами каких веществ возможно образование межмолекулярной водородной связи?

А HF; Б H2O; В NH3; Г H2S; Д HJ.

5. Как изменится скорость реакции 2NO(r) + O2(r) 2NO(r) при одновременном уменьшении концентрации NO(r) и O2(r) 2PO(r) при одновременном уменьшении концентрации PO(r) 10PO(r) 10PO

А 🛮 в 2 раза; Б 🗓 в 2 раза; В 🗓 в 24 раза; Г 🗦 в 24 раза; Д 🗓 в 8 раз.

6. В какую сторону сместится равновесие системы N2 + 3H2 ☐ 2NH3 при повышении давления?

А не сместится; Б в сторону N2 и H2; В в сторону NH3.

- 7. Указать, какие из нижеследующих утверждений правильны: А эндотермические реакции не могут протекать самопроизвольно; Б эндотермические реакции могут протекать при достаточно высоких температурах, если изменение энтропии реакции положительно; В эндотермические реакции могут протекать при достаточно низких температурах.
- 8. Определите, какое вещество при растворении 2 г в 200 г этилового эфира (E=2; tкип=34,50C) повысит температуру кипения до 34,650C?

A NaBr; Б KCl; B Lil; Г NaCl; Д LiBr.

9. В каком соотношении находятся концентрации продуктов диссоциации ортофосфорной кислоты (Кдисс.1>Кдисс.2>Кдисс.3)?

А H2PO4[] >HPO42[] >PO43[]; Б H2PO4[] <HPO42[] <PO43[]; В HPO42[] >H2PO4[] >PO43[];

Г HPO42[] >PO43[] >H2PO4[]; Д PO43[] >H2PO4[] >HPO42[].

10. Константы устойчивости ионов [Ag(NO2)2]- и [Ag(CN)2]- равны соответственно 7,7*102 и 1,3*1020. Каково соотношение равновесных концентраций ионов Ag+ в растворах K[Ag(NO2)2] (C1) и K[Ag(CN)2] (C2) одинаковой молярной концентрации?

A C(Ag+)1>C(Ag+)2; E(Ag+)1< C(Ag+)2; E(Ag+)1 C(Ag+)2.

11. ПР(PbS) = 1·10-29. Вычислите растворимость соли (моль/л).

А 1·10-29; Б 3·10-15; В 3·10-14; Г 1·10-15; Д 3·10-28.

12. Вычислите ЭДС гальванического элемента состоящего из Au-электрода, погруженного в 1·10-6 M раствор AuCl3 и Sn-электрода, погруженного в 1·10-6 M раствор SnCl2. E0(Au3+/Au) = +1,50B; E0(Sn2+/Sn) = $\boxed{0,14B}$. A $\boxed{1,640}$; Б +1,699; B +1,640; Г +1,935; Д $\boxed{1,699}$.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы.

Cu + H2SO5 [] CuSO4 + ?

- 1) Сколько молекул кислоты Kapo (H2SO5) участвует в реакции? A 6; Б 1; В 2; Г 3; Д 4.
- 2) Сколько молекул воды образуется? А 0; Б 1; В 2; Г 3; Д 4.
- 3) Чему равен эквивалент окислителя? A 64·2; Б 64/2; В 64/4; Г 114·2; Д 114/2.

Билет ♦ 8

1. Определите плотность (г/л) смеси, содержащей 60 мол.% N2 и 40 мол.% H2.

A (0.6.28 + 0.4.2)/22.4; E (0.6.28 + 0.4.2); E (0.6.28.0.4.2)/(0.6.28 + 0.4.2).

2. На скольких главных энергетических уровнях распределены электроны у атома никеля?

А 2: Б 3: В 4: Г 7: Д 8.

3. Какова гибридизация кремния в молекуле SiH4?

А нет гибридизации; Б sp; В sp2; Г sp3; Д d2sp3.

4. Поясните изменение длины связи в ряду галогеноводородов: H?F, H?Cl, H?Br, H?J.

А не изменяется; Б []; В [].

5. Для реакции X + Y = Z при Cx=2 моль/л и Cy=1 моль/л скорость реакции равна 0,30 моль/(л·час). Вычислите константу скорости.

А 0,15; Б 0,4; В 0,6; Г 0,4; Д 0,9.

6. В системе установилось равновесие 2СО2 2СО + О2, 2Н=563 кДж/моль. В какую сторону оно сместится при повышении температуры?

А не сместится: Б 🛛 : В 🗓

7. В каком из следующих случаев реакция возможна при любых температурах:

A []H<0, []S>0; δ []H<0, []S<0; Β []H>0, []S>0; Γ []H>0, []S<0;

8. т г неэлектролита растворено в G г растворителя, имеющего криоскопическую постоянную K. Какова молекулярная масса M растворенного вещества?

A $(K \cdot m)/([]t \cdot G)$; $E = \frac{([]t \cdot G)}{(K \cdot m)}$; $E = \frac{(K \cdot G)}{([]t \cdot m \cdot 1000)}$; $E = \frac{(K \cdot m \cdot G)}{([]t \cdot 1000)}$;

Д (K·m·1000)/([]t·G).

9. Раствор содержит 0,01 моля H2CO3 и столько же HCl в 1 л раствора. Чему равна концентрация ионов водорода (моль/л)?

А 0,01; Б 0,02; В 0,03; Г 0,06.

10. Иодид калия осаждает серебро в виде AgI из раствора [Ag(NH3)2]NO3, но не осаждает его из раствора K[Ag(CN)2] той же молярной концентрации. Каково соотношение между константами нестойкости ионов [Ag(NH3)2]+ (\square 1) и [Ag(CN)2] \square 1 (\square 2)?

A ((01))((02)); (01)((02)); (01)=((02)).

11. Каково координационное число Co2+ в комплексе [Coen2(C2O4)]?

А 2: Б 3: В 4: Г 6: Д 8.

12. Вычислите ЭДС гальванического элемента состоящего из Ag-электрода, погруженного в 0,01 M раствор AgNO3 и Mn-электрода, погруженного в 1·10-4 M раствор MnCl2. E0(Ag+/Ag) = +0,80B; E0(Mn2+/Mn) = 1,19B. A +0,626; E0(Ag+Ag) = +0,80B; E0(Mn2+Ag) = 1,19B.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы.

As2S3 + NaOH + Cl2 | Na2SO4 + Na3AsO4 + NaCl + ...

- 1) Сколько молекул Cl2 участвует в реакции? A 2; Б 3; В 6; Г 10; Д 14.
- 2) Сколько молекул воды образуется? А 6; Б 2; В 10; Г 14; Д 20.
- 3) Чему равен эквивалент окислителя? А 71.2; Б 71/2; В 71; Г 246/4; Д 248/28.

Билет � 9

1. Вычислите молекулярную массу (в г) газа, если плотность его при 270С и 304 кПа равна 2,1 г/л.

A (304·103)/(2,1·8,314·300); Б (2,1·10-3·8,314·300)/304000; В (2,1·8,314·27)/304;

 Γ (8,314.300.2,1)/304.

- 2. Какова структура уровня с n=4 атома золота?
- A 4s24p64d104f14; D 4s24p64d104f0; B 4s24p64d04f0; C 4s24p64d104f7; A 4s24p64d54f7.
- 3. Укажите тип гибридизации орбиталей Se в молекуле H2Se, если угол между связями равен 900. А нет гибридизации; Б sp; B sp2; Г sp3; Д d2sp3.
- 4. В молекулах каких веществ, F2, Cl2, BCl3, CO2, CF4, N2, N2O3, SO3, образуются только σ-связи?

A F2, Cl2, BCl3, CF4; δ N2, N2O3, SO3; B BCl3, CO2, CF4; Γ Cl2, BCl3, CO2, CF4.

- 5. Во сколько раз станет больше скорость прямой реакции по сравнению со скоростью обратной реакции в системе 2NO + O2 = 2NO2 при увеличении давления в системе в 10 раз? А 10; Б 102; В 103; Г 104; Д 105.
- 6. В какую сторону сместится равновесие в системе H2 + Cl2 ☐ 2HCl при понижении давления? А не сместится; Б в сторону H2 и Cl2; В в сторону HCl.
- 7. Не производя вычислений, указать, для каких процессов [S>0:

A MgO(k)+H2(Γ)=Mg(k) + H2O(π); Γ C(Γ)+CO2(Γ)=2CO(Γ); B 4HCI(Γ)+O2(Γ)=2CI2(Γ)+2H2O(Γ);

 Γ NH4NO3(k)=N2O(Γ)+ 2H2O(Γ).

- 8. Какой из растворов обладает большим осмотическим давлением: 1-ый раствор в 1 л ацетона 15 г стирола C6H5CH=CH2; 2-ой раствор в 1 л ацетона 15 г тетраэтилсвинца Pb(C2H5)4?
- А 1-ый; Б 2-ой; В оба раствора имеют одинаковое Росм.
- 9. Смешиваются равные объемы 0,06 M Ba(OH)2, 0,03 M HNO3 и 0,03 M H2SO4. Вычислите рН полученного раствора.
- A $\square Ig(3.10-2)$; Б $\square Ig10-2$; В $\square Ig10-11$; Г $\square Ig(3.10\square 11)$; Д $\square Ig10-12$.
- 10. Константы устойчивости ионов [Ag(NH3)2]+ и [Cd(NH3)4]2+ близки по значению и составляют 1,08·107 и 1,32·107. Указать соотношение концентраций свободных ионов C(Ag+) и C(Cd2+) в растворах [Ag(NH3)2]Cl и [Cd(NH3)4]Cl2 одинаковой молярной концентрации в присутствии 0,1 моль/л NH3.

A C(Ag+)>C(Cd2+); E(Ag+)< C(Cd2+); $E(Ag+) \square C(Cd2+)$.

11. Чему равен рН 0,01 М раствора соли, образованной слабыми основанием и кислотой, если константы диссоциации равны Ккисл.= Косн.=10-12.

А 5; Б 6; В 7; Г 8; Д 9.

- 12. Вычислите ЭДС гальванического элемента состоящего из Ni-электрода, погруженного в 0,01 M раствор NiCl2 и Cr-электрода, погруженного в 0,001 M раствор CrCl3. E0(Ni2+/Ni) = 0.23B; E0(Cr3+/Cr) = 0.74B.
- A +0,510; Б \square 0,970; В \square 0,510; Γ +1,088; Д \square 0,972.
- 13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы.

H2O2 + H2S4 [] H2SO4 + ?

- 1) Сколько молекул H2O2 участвует в реакции? А 6; Б 7; В 2; Г 13; Д 26.
- 2) Скол ько молекул воды образуется? А 2; Б 4; В 6; Г 8; Д 10.
- 3) Чему равен эквивалент восстановителя? А34; Б 34/2; В 130/22; Г 130/2; Д 130/26.

Билет ♦ 10

- 1. Определите эквивалент кадмия, если известно, что при растворении 10 г Cd в соляной к ислоте по реакции Cd +2HCl = CdCl2 + H2 выделяется 2 л H2 при н.у.
- A 2.10/22.4; E 22.4.10/(2.2); E 22.4.2.10/2; E 22.4.10/2.
- 2. Сколько электронов находится на 5d-подуровне атома свинца?

А 2; Б 6; В 8; Г 10; Д 14.

3. В какой молекуле - BF3 или NH3 значение дипольного момента больше?

А у BF3; Б у NH3; В приблизительно равны.

4. Какова кратность связи в молекуле СО (метод ВС)?

А 1; Б 1,5; В 2; Г 2,5; Д 3.

5. Две реакции при 300С протекают с одинаковой скоростью (u1= u2). Температурный коэффициент первой реакции равен 4, второй - 3. Каково будет отношение u1/ u2 при 500С?

А 3/4; Б 9/16; В 27/64; Г 16/9; Д 64/27.

6. В системе установилось равновесие Fe3O4(k) + CO(г) \square 3FeO(k) + CO2(г). В какую сторону оно сместиться при повышении давления?

A не сместится; Б 🛛 ; В 🗓.

7. Если []H<0 и []S<0, то в каком случае реакция может протекать самопроизвольно:

A | []H| > |T[]S|; B | []H| < |T[]S|; B | []H| = |T[]S|?

8. Какова мольная доля пиридина C5H5N в растворе, содержащем 237 г вещества и 126 мл воды?

A 237/(126+237); \Box 237/126; \Box 0,3; \Box 3/7.

9. Раствор содержит 0,01 молей NaOH и то же количество молей NH4OH в 0,5 л раствора. Чему равна концентрация ионов гидроксила OH□ (моль/л) ?

А 0,01; Б 0,02; В 0,04; Г 12,3; Д 1,7.

10. Растворимость соли AB2 равны 0.02 г в 100 мл раствора. М.м. соли равна 200. Вычислите ПР.

А 1·10-3; Б 1·10-6; В 4·10-9; Г 2·10-9; Д 1·10-9.

11. Вычислите рН 0,0001 н. раствора соли, образованной одноосновными слабой кислотой и сильным основанием, если константа диссоциации слабой кислоты равны 1·10-12.

А 11; Б 2; В 12; Г 13; Д 3.

13. Уравняйте окислительно-восстановительную реакцию и ответьте на вопросы.

FeS2 + HNO3 [] Fe(NO3)3 + SO2 + NO2 + ...

- 1) Сколько молекул HNO3 участвует в реакции? А 14; Б 2; В 5; Г 8; Д 11.
- 2) Сколько воды образуется? А 11; Б 9; В 7; Г 5; Д 3.
- 3) Чему равен эквивалент окислителя? A 63; Б 63·11; В 63/11; Г 120/11; Д 120·11.

6.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В КФУ действует балльно-рейтинговая система оценки знаний обучающихся. Суммарно по дисциплине (модулю) можно получить максимум 100 баллов за семестр, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов.

Для зачёта:

56 баллов и более - "зачтено".

55 баллов и менее - "не зачтено".

Для экзамена:

86 баллов и более - "отлично".

71-85 баллов - "хорошо".

56-70 баллов - "удовлетворительно".

55 баллов и менее - "неудовлетворительно".

Форма контроля	Процедура оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	Этап	Количество баллов
Семестр 4			
Текущий кон	троль		
Контрольная работа	Контрольная работа проводится в часы аудиторной работы. Обучающиеся получают задания для проверки усвоения пройденного материала. Работа выполняется в письменном виде и сдаётся преподавателю. Оцениваются	1	15
	владение материалом по теме работы, аналитические способности, владение методами, умения и навыки, необходимые для выполнения заданий.	2	15
		3	20
Экзамен	Экзамен нацелен на комплексную проверку освоения дисциплины. Экзамен проводится в устной или письменной форме по билетам, в которых содержатся вопросы (задания) по всем темам курса. Обучающемуся даётся время на подготовку. Оценивается владение материалом, его системное освоение, способность применять нужные знания, навыки и умения при анализе проблемных ситуаций и решении практических заданий.		50

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1 Основная литература:

- 1. Коровин Н.В. и др. Общая химия. Теория и задачи. СПб.: Лань, 2014. 496 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=51723
- 2. Основы химии: Учебник / В.Г. Иванов, О.Н. Гева. М.: КУРС: НИЦ ИНФРА-М, 2014. 560 с. Режим доступа: http://znanium.com/bookread.php?book=421658
- 3. Александрова Э.А. и др. Аналитическая химия. Теоретические основы и лабораторный практикум: В 2 кн. Кн.
- 1. Химические методы анализа. М.: КолосС, 2013. Режим доступа: http://www.studmedlib.ru/book/ISBN9785953207416.html
- 4. Методическое пособие по общей химии для самостоятельной работы студентов. Казань: КГУ, 2009. 132 с.

7.2. Дополнительная литература:

1. Афанасьев Б.Н. Акулова Ю.П. Физическая химия. [Электронный ресурс]. СПб.: Лань, 2012. 416 с.

Режим доступа: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=4312

- 2. Павлов, Н.Н. Общая и неорганическая химия. [Электронный ресурс]. СПб.: Лань, 2011. 496 с. Режим доступа: http://e.lanbook.com/book/4034
- 3. Общая химия [Электронный ресурс] / Попков В.А., Пузаков С.А. М.: ГЭОТАР-Медиа, 2010. Режим доступа: http://www.studmedlib.ru/book/ISBN9785970415702.html

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия -

http://chemistry-chemists.com/forum/viewtopic.php?f=9&t=18&p=1928#p1928 - Образовательный портал по химии - http://www.chemiemania.ru/chemie-99.html

Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия -

http://chemistry-chemists.com/forum/viewtopic.php?f=9&t=18&p=1928#p1928 - Образовательный портал по химии - http://www.chemiemania.ru/chemie-99.html

Неорганическая химия. Лекции для студентов первого курса. МГУ -

http://www.chem.msu.ru/rus/teaching/thermo/welcome.html - Образовательный ресурс -

http://media.ls.urfu.ru/chemistry/

Неорганическая химия. Лекции для студентов первого курса. МГУ -

http://www.chem.msu.ru/rus/teaching/thermo/welcome.html - Образовательный ресурс -

http://media.ls.urfu.ru/chemistry/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации
лекции	Конспектирование лекций - сложный вид вузовской аудиторной работы, предполагающий интенсивную умственную деятельность студента. Конспект является полезным тогда, когда записано самое существенное и сделано это самим обучающимся. Не надо стремиться записать дословно всю лекцию. Такое 'конспектирование' приносит больше вреда, чем пользы. Целесообразно вначале понять основную мысль, излагаемую лектором, а затем записать ее. Желательно запись осуществлять на одной странице листа или оставляя поля, на которых позднее, при самостоятельной работе с конспектом, можно сделать дополнительные записи, отметить непонятные места. Конспект лекции лучше подразделять на пункты, соблюдая красную строку. Этому в большой степени будут способствовать вопросы плана лекции, предложенные преподавателям. Следует обращать внимание на акценты, выводы, которые делает лектор, отмечая наиболее важные моменты в лекционном материале замечаниями 'важно', 'хорошо запомнить' и т.п. Можно делать это и с помощью разноцветных маркеров или ручек, подчеркивая термины и определения. Целесообразно разработать собственную систему сокращений, аббревиатур и символов. Однако при дальнейшей работе с конспектом символы лучше заменить обычными словами для быстрого зрительного восприятия текста. Работая над конспектом лекций, всегда необходимо использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Именно такая серьезная, кропотливая работа с лекционным материалом позволит глубоко овладеть теоретическим материалом.

Вид работ	Методические рекомендации
практические занятия	Выполнение лабораторных и практических работ осуществляется на лабораторных и практических занятиях в соответствии с графиком учебного процесса. Для обеспечения самостоятельной работы преподавателями разрабатываются методические указания по выполнению лабораторной/практической работы. Работа с литературой, другими источниками информации, в т.ч. электронными может реализовываться на семинарских и практических занятиях. Данные источники информации могут быть представлены на бумажном и/или электронном носителях, в том числе, в сети Internet. Преподаватель формулирует цель работы с данным источником информации, определяет время на проработку документа и форму отчетности. Само и взаимопроверка выполненных заданий чаще используется на семинарском, практическом занятии и имеет своей целью приобретение таких навыков как наблюдение, анализ ответов сокурсников, сверка собственных результатов с эталонами. Решение проблемных и ситуационных задач используется на лекционном, семинарском, практическом и других видах занятий. Проблемная/ситуационная задача должна иметь четкую формулировку, к ней должны быть поставлены вопросы, ответы на которые необходимо найти и обосновать. Критерии оценки правильности решения проблемной/ситуационной задачи должны быть известны всем обучающимся.
самостоятельная работа	Самостоятельная работа студентов включает в себя выполнение практических заданий. При выполнении практических заданий студент руководствуется правилами, изложенными в описании работы (описание работы предоставляется преподавателем либо в электронном виде, либо на твердом носителе, либо в устной форме). Самостоятельно анализирует полученные результаты и делает соответствующие выводы. Самостоятельная работа проводится для более глубокого усвоения дисциплины, приобретения навыков работы с литературой, документами, первоисточниками и т.п. Рекомендуемая литература сообщается преподавателем на вводных занятиях Самостоятельная работа включает 2 этапа: 1й - организационный; 2й - закрепление и углубление теоретических знаний. На первом этапе студент планирует свою самостоятельную работу, которая включает: уяснение задания на самостоятельную работу; подбор рекомендованной литературы; составление плана работы, в котором определяются основные пункты предстоящей подготовки. Составление плана дисциплинирует и повышает организованность в работе. Второй этап включает непосредственную подготовку студента к занятию. Начинать надо с изучения рекомендованной литературы. Студентам рекомендуется получить в Библиотечно-информационном центре института учебную литературу по дисциплине, необходимую для эффективной работы на всех видах аудиторных занятий, а также для самостоятельной работы по изучению дисциплины. Успешное освоение курса предполагает активное, творческое участие студента путем планомерной, повседнеенной работы. Вопросы тем необходимо изучить по хрестоматийным источникам (учебники, учебные пособия и пр.), где материал излагается в наиболее доступной форме, а затем переходить к более глубокому усвоению вопросов выбранной темы, используя рекомендованную и иную литературу. В процессе исследования литературных источников рекомендуется составлять конспект, делая выписки с учетом темы и методических указаний. В процессе этой работы студент должен стремиться понять и запомнить основные положения расоты студент должен ст

Вид работ	Методические рекомендации
контрольная работа	Контрольная работа является одной из составляющих учебной деятельности студента по овладению знаниями в области физиологии и биохимии растений. К ее выполнению необходимо приступить только после изучения тем дисциплины. Целью контрольной работы является определения качества усвоения лекционного материала и части дисциплины, предназначенной для самостоятельного изучения. Задачи, стоящие перед студентом при подготовке и написании контрольной работы: 1) закрепление полученных ранее теоретических знаний; 2) выработка навыков самостоятельной работы; 3) выяснение подготовленности студента к будущей практической работе. Контрольные выполняются студентами в аудитории, под наблюдением преподавателя. Тема контрольной работы известна и проводится она по сравнительно недавно изученному материалу. Преподаватель готовит задания либо по вариантам, либо индивидуально для каждого студента. По содержанию работа может включать теоретический материал, задачи, тесты, расчеты и т.п. выполнению контрольной работы предшествует инструктаж преподавателя. Ключевым требованием при подготовке контрольной работы выступает творческий подход, умение обрабатывать и анализировать информацию, делать самостоятельные выводы, обосновывать целесообразность и эффективность предлагаемых рекомендаций и решений проблем, чётко и логично излагать свои мысли. Подготовку контрольной работы следует начинать с повторения соответствующего раздела учебника, учебных пособий по данной теме и конспектов лекций.
экзамен	Подготовка студента к экзамену включает в себя три этапа: - самостоятельная работа в течение семестра; - непосредственная подготовка в дни, предшествующие зачету/экзамену по темам курса подготовка к ответу на вопросы, содержащиеся в билетах. Литература для подготовки к экзамену рекомендуется преподавателем и указана в ЭОРе. Для полноты учебной информации и ее сравнения лучше использовать не менее двух учебников. Студент вправе сам придерживаться любой из представленных в учебниках точек зрения по спорной проблеме (в том числе отличной от преподавателя), но при условии достаточной научной аргументации. Основным источником подготовки к экзамену является конспект лекций, где учебный материал дается в систематизированном виде, основные положения его детализируются, подкрепляются современными фактами и информацией, которые в силу новизны не вошли в опубликованные печатные источники. В ходе подготовки к экзамену студентам необходимо обращать внимание не только на уровень запоминания, но и на степень понимания излагаемых проблем. Экзамен проводится по билетам, охватывающим весь пройденный материал. По окончании ответа экзаменатор может задать студенту дополнительные и уточняющие вопросы. На подготовку к ответу по вопросам билета студенту дается 30 минут с момента получения им билета.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Освоение дисциплины "Химия" предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows Professional 7 Russian

Пакет офисного программного обеспечения Microsoft Office 2010 Professional Plus Russian Браузер Google Chrome

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "БиблиоРоссика", доступ к которой предоставлен обучающимся. В ЭБС "БиблиоРоссика "представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен обучающимся. Многопрофильный образовательный ресурс "Консультант студента" является электронной библиотечной системой (ЭБС), предоставляющей доступ через сеть Интернет к учебной литературе и дополнительным материалам, приобретенным на основании прямых договоров с правообладателями. Полностью соответствует требованиям федеральных государственных образовательных стандартов высшего образования к комплектованию библиотек, в том числе электронных, в части формирования фондов основной и дополнительной литературы.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Освоение дисциплины "Химия" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Специализированная лаборатория оснащена оборудованием, необходимым для проведения лабораторных работ, практических занятий и самостоятельной работы по отдельным дисциплинам, а также практик и научно-исследовательской работы обучающихся. Лаборатория рассчитана на одновременную работу обучающихся академической группы либо подгруппы. Занятия проводятся под руководством сотрудника университета, контролирующего выполнение видов учебной работы и соблюдение правил техники безопасности. Качественный и количественный состав оборудования и расходных материалов определяется спецификой образовательных программ.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;

- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий:
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 16.03.01 "Техническая физика" и профилю подготовки не предусмотрено.

