МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

УТВЕРЖДАЮ

Программа дисциплины

Теория некристаллических сред М1.ДВ.4

Направление подготовки: 011200.68 - Физика
Профиль подготовки: <u>Физика конденсированного состояния</u>
Квалификация выпускника: магистр
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Белов С.И.
Рецензент(ы):
-
СОГЛАСОВАНО:
Заведующий(ая) кафедрой:
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2013

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Белов С.И. Кафедра теоретической физики Отделение физики , Sergei.Belov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины "Теория некристаллических сред" являются изучение основ и приложений современной теории критических явлений

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " М1.ДВ.4 Общенаучный" основной образовательной программы 011200.68 Физика и относится к дисциплинам по выбору. Осваивается на 2 курсе, 3 семестр.

Дисциплина М1.ДВ4 входит в вариативную (региональную) часть общенаучного цикла. Для освоения дисциплины необходимы знания дисциплин: квантовая теория, статистическая физика, квантовая теория твердого тела. Освоение дисциплины необходимо для изучения дисциплин, связанных с физикой конденсированного состояния и для успешной профессиональной деятельности

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-1 (общекультурные компетенции)	способность демонстрировать углубленные знания в области математики и естественных наук
ОК-7 (общекультурные компетенции)	способность адаптироваться к изменению научного и научно- производственного профиля своей профессиональной деятельности, к изменению социокультурных и социальных условий деятельности
ОК-8 (общекультурные компетенции)	способность к коммуникации в научной, производственной и социально-общественной сферах деятельности, свободное владение русским и иностранным языками как средством делового общения
ПК-1 (профессиональные компетенции)	способность свободно владеть фундаментальными разделами физики, необходимыми для решения научно-исследовательских задач (в соответствии со своей магистерской программой)
ПК-2 (профессиональные компетенции)	способность использовать знания современных проблем физики, новейших достижений физики в своей научно-исследовательской деятельности
ПК-3 (профессиональные компетенции)	способность самостоятельно ставить конкретные задачи научных исследований в области физики (в соответствии с профилем магистерской программы) и решать их с помощью современной аппаратуры, оборудования, информационных технологий использованием новейшего отечественного и зарубежного опыта
ПК-7 (профессиональные компетенции)	способность свободно владеть профессиональными знаниями для анализа и синтеза физической информации (в соответствии с профилем подготовки)

В результате освоения дисциплины студент:

1. должен знать:

способы квантового описания систем многих частиц

2. должен уметь:

применять концепцию элементарных возбуждений для описания основных характеристик явлений сверхтекучести, сверхпроводимости и магнетизма

3. должен владеть:

навыками приближенного решения задачи об энергетическом спектре элементарных возбуждений

к дальнейшему обучению

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.):

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Теория Ландау фазовых переходов: параметры порядка, критические показатели, переходы 1-го и 2-го рода.	3	1	2	0	0	
2.	Тема 2. Флуктуации параметра порядка (гауссово приближение). Критерий Гинзбурга.	3	1-2	2	2	0	устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной ра их трудоемк (в часах Практические	аботы, ость) Лабораторные	Текущие формы контроля
	Тема 3. Гипотеза подобия и масштабные преобразования: термодинамические величины как обобщенно-однородные функции, соотношения между критическими показателями.	e 3	3-4	2	Занятия	раооты	устный опрос
4.	Тема 4. Ренормализационная группа: эффективный гамильтониан Гинзбурга-Ландау, преобразование Каданова, масштабное преобразование. Неподвижные точки и их устойчивость. Связь ренорм группы и гипотезы подобия.	3	5-7	3	3	0	устный опрос
5.	Тема 5. Простейшие примеры вычисления критических показателей: гауссова неподвижная точка, нетривиальная неподвижная точка, е-разложение критических показателей.	3	8-10	3	2	0	устный опрос
	Тема 6. Влияние примесей на критическое поведение.	3	11-13	1	3	0	устный опрос
\vdash	Тема 7. Аттестация	3		0	0	0	
8.	Тема 8. Итого	3	1-13	0	0	0	
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			13	13	0	

4.2 Содержание дисциплины

Тема 1. Теория Ландау фазовых переходов : параметры порядка, критические показатели, переходы 1-го и 2-го рода.

лекционное занятие (2 часа(ов)):

параметры порядка, критические показатели, переходы 1-го и 2-го рода.

Тема 2. Флуктуации параметра порядка (гауссово приближение). Критерий Гинзбурга.

лекционное занятие (2 часа(ов)):

Гауссово приближение.

практическое занятие (2 часа(ов)):

Критерий Гинзбурга.

Тема 3. Гипотеза подобия и масштабные преобразования: термодинамические величины как обобщенно-однородные функции, соотношения между критическими показателями.

лекционное занятие (2 часа(ов)):

Термодинамические величины как обобщенно-однородные функции.

практическое занятие (3 часа(ов)):

Соотношения между критическими показателями.

Тема 4. Ренормализационная группа: эффективный гамильтониан Гинзбурга-Ландау, преобразование Каданова, масштабное преобразование. Неподвижные точки и их устойчивость. Связь ренорм группы и гипотезы подобия.

лекционное занятие (3 часа(ов)):

Эффективный гамильтониан Гинзбурга-Ландау, преобразование Каданова, масштабное преобразование. Неподвижные точки и их устойчивость.

практическое занятие (3 часа(ов)):

Связь ренорм группы и гипотезы подобия.

Тема 5. Простейшие примеры вычисления критических показателей: гауссова неподвижная точка, нетривиальная неподвижная точка, є-разложение критических показателей.

лекционное занятие (3 часа(ов)):

Гауссова неподвижная точка, нетривиальная неподвижная точка.

практическое занятие (2 часа(ов)):

ε-разложение критических показателей.

Тема 6. Влияние примесей на критическое поведение.

лекционное занятие (1 часа(ов)):

Эффективный гамильтониан, описывающий вмороженные примеси

практическое занятие (3 часа(ов)):

Вычисление критических показателей с учетом вмороженных примесей

Тема 7. Аттестация

Тема 8. Итого

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Флуктуации параметра порядка (гауссово приближение). Критерий Гинзбурга.	3	-/	подготовка к устному опросу	6	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
3.	Тема 3. Гипотеза подобия и масштабные преобразования: термодинамические величины как обобщенно-однородные функции, соотношения между критическими показателями.	e 3	≺-∠L	подготовка к устному опросу	6	устный опрос
4.	Тема 4. Ренормализационная группа: эффективный гамильтониан Гинзбурга-Ландау, преобразование Каданова, масштабное преобразование. Неподвижные точки и их устойчивость. Связь ренорм группы и гипотезы подобия.	3) カ-/	подготовка к устному опросу	6	устный опрос
5.	Тема 5. Простейшие примеры вычисления критических показателей: гауссова неподвижная точка, нетривиальная неподвижная точка, е-разложение критических показателей.	3	ו מ-וט	подготовка к устному опросу	6	устный опрос
6.	Тема 6. Влияние примесей на критическое поведение.	3		подготовка к устному опросу	22	устный опрос
	Итого				46	

5. Образовательные технологии, включая интерактивные формы обучения

Курсы лекций и семинарских занятий, организованные по стандартной технологии

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Теория Ландау фазовых переходов : параметры порядка, критические показатели, переходы 1-го и 2-го рода.

Тема 2. Флуктуации параметра порядка (гауссово приближение). Критерий Гинзбурга.

устный опрос, примерные вопросы:

Критерий Гинзбурга. Гауссово приближение.

Тема 3. Гипотеза подобия и масштабные преобразования: термодинамические величины как обобщенно-однородные функции, соотношения между критическими показателями.

устный опрос, примерные вопросы:

Соотношения между критическими показателями.

Тема 4. Ренормализационная группа: эффективный гамильтониан Гинзбурга-Ландау, преобразование Каданова, масштабное преобразование. Неподвижные точки и их устойчивость. Связь ренорм группы и гипотезы подобия.

устный опрос, примерные вопросы:

Неподвижные точки и их устойчивость. Связь ренорм группы и гипотезы подобия.

Тема 5. Простейшие примеры вычисления критических показателей: гауссова неподвижная точка, нетривиальная неподвижная точка, є-разложение критических показателей.

устный опрос, примерные вопросы:

Гауссова неподвижная точка, нетривиальная неподвижная точка, ε-разложение критических показателей

Тема 6. Влияние примесей на критическое поведение.

устный опрос, примерные вопросы:

Критические показатели в присутствии примесей

Тема 7. Аттестация

Тема 8. Итого

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Зачет в соответствии с приведенной выше программой; самостоятельные работы, формируемые на основе приведенной литературы:

7.1. Основная литература:

- 1. . Ландау Л.Д., Лифшиц Е.М. Статистическая физика, 2003, М.: Физматлит.
- 2. Изюмов Ю.А., Анисимов В.И. Электронная структура соединений с сильными корреляциями.
- М.-Ижевск: Ижевский институт компъютерных исследований, 2008.

7.2. Дополнительная литература:

- 1. А.З. Паташинский, В.Л. Покровский. Флуктуационная теория фазовых переходов. М. Наука, 1982.
- 2. Ш. Ма. Современная теория критических явлений. М., Мир.1980.
- 3.P. Minnhagen. Reviews of Modern Physics, v.59, p.1001, 1987.

7.3. Интернет-ресурсы:

методические материалы кафедры ТФ - http://www.kpfu.ru/main_page?p_sub=8205

Новая электронная библиотека newlibrary.ru -

http://www.newlibrary.ru/genre/nauka/fizika/termodinamika__statisticheskaja_f

Сайт кафедры теоретической физики КФУ - http://www.ksu.ru/f6/k2/index.php

ЭБС КнигаФонд - http://www.knigafund.ru

ЭОР на www.twirpx.com - http://www.twirpx.com/files/#Category 42

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Теория некристаллических сред" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "КнигаФонд", доступ к которой предоставлен студентам. Электронно-библиотечная система "КнигаФонд" реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. КнигаФонд обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям новых ФГОС ВПО.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011200.68 "Физика" и магистерской программе Физика конденсированного состояния.

Автор(ы):	
Белов С.И	
"	_ 201 г.
Рецензент(ы):	
"_"	_ 201 г.