МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

подписано электронно-цифровой подписью

Программа дисциплины

Физика Б2.В.2

Направление подготовки: 010100.62 - Математика
Профиль подготовки: Общий профиль
Квалификация выпускника: бакалавр
Форма обучения: очное
Язык обучения: русский
Автор(ы):
<u>Деминов Р.Г.</u>
Рецензент(ы):
Прошин Ю.Н.

СОГЛАСОВАНО:

5017111002111101
Заведующий(ая) кафедрой: Прошин Ю. Н. Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института математики и механики им. Н.И. Лобачевского : Протокол заседания УМК No от "" 201г
Регистрационный No 817225114
Казань
2014

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННО АНАЛИТИЧЕСКАЯ СИСТЕМА КНО

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Деминов Р.Г. Кафедра теоретической физики Отделение физики . Raphael.Deminov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины "Физика" являются изучение фундаментальных понятий и ознакомление с современным состоянием электродинамики, квантовой механики, термодинамики и статистической физики

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б2.В.2 Общепрофессиональный" основной образовательной программы 010100.62 Математика и относится к вариативной части. Осваивается на 4 курсе, 8 семестр.

Б2.В.2. Дисциплина входит в вариативную часть цикла естественнонаучных дисциплин (Б.2). Для освоения дисциплины необходимы знания дисциплин: математический анализ, алгебра, аналитическая геометрия, дифференциальные уравнения, теоретическая механика. Освоение дисциплины будет способствовать успешной профессиональной деятельности, позволит в дальнейшем изучать курсы общенаучного и профессионального циклов основной образовательной программы магистратуры. Осваивается на четвертом курсе (8 семестр).

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
OK-10 (общекультурные компетенции)	умение находить, анализировать и контекстно обрабатывать научно-техническую информацию
ОК-8 (общекультурные компетенции)	способность приобретать новые знания, используя современные образовательные и информационные технологии
ПК-20 (профессиональные компетенции)	владение методами математического и алгоритмического моделирования при решении прикладных задач
ПК-23 (профессиональные компетенции)	владение проблемно-задачной формой представления естественнонаучных знаний
ПК-25 (профессиональные компетенции)	умение самостоятельно математически корректно ставить естественно-научные и инженерно-физические задачи

В результате освоения дисциплины студент:

1. должен знать:

теоретические основы электродинамики, квантовой механики, термодинамики и статистической физики; иметь представление о современном состоянии в указанных разделах физики

2. должен уметь:

формулировать и доказывать основные результаты электродинамики, квантовой механики, термодинамики и статистической физики

3. должен владеть:

Владеть навыками вычисления (в простых задачах) основных электродинамических и квантовомеханических величин, макроскопических характеристик системы

4. должен демонстрировать способность и готовность:

к дальнейшему обучению

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 6 зачетных(ые) единиц(ы) 216 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 8 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. ЭЛЕКТРОДИНАМИКА. Введение.	8	1	1	0	1	устный опрос
2.	Тема 2. Уравнения Максвелла-Лоренца.	8	2-3	5	0	5	домашнее задание
3.	Тема 3. Электростатическое поле.	8	4	4	0	4	домашнее задание
4.	Тема 4. Электромагнитное поле постоянных токов - магнитостатика.	8	5	3	0	3	контрольная работа
5.	Тема 5. Уравнения Максвелла.	8	6	3	0	3	домашнее задание
6.	Тема 6. Высокочастотные электромагнитные поля.	8	7	2	0	2	домашнее задание
7.	Тема 7. КВАНТОВАЯ МЕХАНИКА Введение	8	8	2	0	2	домашнее задание

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	
8.	Тема 8. Математический аппарат квантовой механики	8	9	4	0	4	домашнее задание
9.	Тема 9. Физическое значение операторов	8	10	6	0	6	контрольная работа
	Тема 10. Вероятностное толкование квантовой механики	8	11	2	0	2	домашнее задание
11.	Тема 11. Простейшие применения квантовой механики.	8	12	4	0	4	домашнее задание
12.	Тема 12. ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА Основные принципы статистической физики.	8	13-14	5	0	5	домашнее задание
13.	Тема 13. Общие методы статистической физики.	8	15	5	0	5	контрольная работа
14.	Тема 14. Термодинамические величины и термодинамические соотношения.	8	16-17	6	0	6	домашнее задание
15.	Тема 15. Идеальные газы.	8	18	2	0	2	домашнее задание
	Тема . Итоговая форма контроля	8		0	0	0	экзамен
	Итого			54	0	54	

4.2 Содержание дисциплины

Тема 1. ЭЛЕКТРОДИНАМИКА. Введение.

лекционное занятие (1 часа(ов)):

ЭЛЕКТРОДИНАМИКА. Введение. Заряды и частицы. Теоретическое описание электромагнитных сил

лабораторная работа (1 часа(ов)):

Решение задач по указанному разделу.

Тема 2. Уравнения Максвелла-Лоренца.

лекционное занятие (5 часа(ов)):

Уравнения Максвелла-Лоренца. Уравнения Максвелла-Лоренца как обобщения опытных фактов. Общая характеристика уравнений Максвелла-Лоренца. Потенциалы электромагнитного поля. Классификация задач электродинамики

лабораторная работа (5 часа(ов)):

Решение задач по указанному разделу.

Тема 3. Электростатическое поле.

лекционное занятие (4 часа(ов)):

Электростатическое поле. Потенциал, уравнение Пуассона. Электростатическое поле точечного заряда и диполя. Потенциал и поле системы зарядов на больших расстояниях от нее. Энергия системы зарядов во внешнем поле. Энергия взаимодействия зарядов и энергия электростатического поля.

лабораторная работа (4 часа(ов)):

Решение задач по указанному разделу.

Тема 4. Электромагнитное поле постоянных токов - магнитостатика.

лекционное занятие (3 часа(ов)):

Электромагнитное поле постоянных токов - магнитостатика. Уравнение для векторного потенциала, закон Био-Савара-Лапласа. Векторный потенциал и магнитное поле системы токов на больших расстояниях от нее. Магнитный момент. Магнитный диполь.

лабораторная работа (3 часа(ов)):

Решение задач по указанному разделу.

Тема 5. Уравнения Максвелла.

лекционное занятие (3 часа(ов)):

Уравнения Максвелла. Усреднение уравнений Максвелла-Лоренца. Ток проводимости, ток поляризации, ток намагничивания в среде, индукция электрического и магнитного полей. Полнота уравнений Максвелла, материальные уравнения.

лабораторная работа (3 часа(ов)):

Решение задач по указанному разделу.

Тема 6. Высокочастотные электромагнитные поля.

лекционное занятие (2 часа(ов)):

Высокочастотные электромагнитные поля. Плоские электромагнитные волны в однородном изотропном диэлектрике? волновое уравнение, его решение в виде бегущих волн, свойства плоских электромагнитных волн.

лабораторная работа (2 часа(ов)):

Решение задач по указанному разделу.

Тема 7. КВАНТОВАЯ МЕХАНИКА Введение

лекционное занятие (2 часа(ов)):

КВАНТОВАЯ МЕХАНИКА Введение Классический способ описания явлений. Соотношения неопределенности Гейзенберга. Квантовый способ описания явлений.

лабораторная работа (2 часа(ов)):

Решение задач по указанному разделу.

Тема 8. Математический аппарат квантовой механики

лекционное занятие (4 часа(ов)):

Математический аппарат квантовой механики Квантовая механика и задачи на линейные операторы. Линейные операторы и их свойства

лабораторная работа (4 часа(ов)):

Решение задач по указанному разделу.

Тема 9. Физическое значение операторов

лекционное занятие (6 часа(ов)):

Физическое значение операторов Толкование собственных значений оператора. Операторы для координат, импульсов и момента импульса. Условия возможности одновременного измерения физических величин. Оператор энергии. Волновое и стационарное уравнения Шредингера

лабораторная работа (6 часа(ов)):

Решение задач по указанному разделу.

Тема 10. Вероятностное толкование квантовой механики

лекционное занятие (2 часа(ов)):

Вероятностное толкование квантовой механики Математическое ожидание в теории вероятностей и квантовой механике. Стационарные состояния и их свойства.

лабораторная работа (2 часа(ов)):

Решение задач по указанному разделу.

Тема 11. Простейшие применения квантовой механики.

лекционное занятие (4 часа(ов)):

Простейшие применения квантовой механики. Свободная частица. Потенциальный порог. Потенциальный барьер. Частица в прямоугольной потенциальной яме. Гармонический осциллятор-спектр энергии, собственные функции.

лабораторная работа (4 часа(ов)):

Решение задач по указанному разделу.

Тема 12. ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА Основные принципы статистической физики.

лекционное занятие (5 часа(ов)):

ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА Основные принципы статистической физики. Термодинамика и статистическая физика как теория макроскопических систем. Метод ансамблей. Функция статистического распределения. Матрица плотности. Квантовое и классическое уравнения Лиувилля.

лабораторная работа (5 часа(ов)):

Решение задач по указанному разделу.

Тема 13. Общие методы статистической физики.

лекционное занятие (5 часа(ов)):

Общие методы статистической физики. Микроканоническое распределение. Закон возрастания энтропии. Каноническое распределение. Большое каноническое распределение.

лабораторная работа (5 часа(ов)):

Решение задач по указанному разделу.

Тема 14. Термодинамические величины и термодинамические соотношения.

лекционное занятие (6 часа(ов)):

Термодинамические величины и термодинамические соотношения. Адиабатический процесс. Первое начало термодинамики. Термодинамические потенциалы и их свойства. Связь статистической суммы с термодинамическими потенциалами. Условия равновесия системы. Второе начало термодинамики. Третье начало термодинамики.

лабораторная работа (6 часа(ов)):

Решение задач по указанному разделу.

Тема 15. Идеальные газы.

лекционное занятие (2 часа(ов)):

Идеальные газы. Принцип неразличимости тождественных частиц. Распределения Ферми-Дирака и Бозе-Эйнштейна. Калорическое уравнение состояния идеальных газов.

лабораторная работа (2 часа(ов)):

Решение задач по указанному разделу.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра		Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. ЭЛЕКТРОДИНАМИКА. Введение.	8	1	подготовка к устному опросу 2		устный опрос
2.	Тема 2. Уравнения Максвелла-Лоренца.	8	2-3	подготовка домашнего задания	6	домашнее задание
3.	Тема 3. Электростатическое поле.	8	4	подготовка домашнего задания	6	домашнее задание
4.	Тема 4. Электромагнитное поле постоянных токов - магнитостатика.	8	5	подготовка к контрольной работе	4	контрольная работа
5.	Тема 5. Уравнения Максвелла.	8	6	подготовка домашнего задания	4	домашнее задание
6.	Тема 6. Высокочастотные электромагнитные поля.	8	7	подготовка домашнего задания	2	домашнее задание
7.	Тема 7. КВАНТОВАЯ МЕХАНИКА Введение	8	8	подготовка домашнего задания	2	домашнее задание
8.	Тема 8. Математический аппарат квантовой механики	8	9	подготовка домашнего задания	4	домашнее задание
9.	Тема 9. Физическое значение операторов	8	10	подготовка к контрольной работе	8	контрольная работа
10.	Тема 10. Вероятностное толкование квантовой механики	8	11	подготовка домашнего задания	4	домашнее задание
11.	Тема 11. Простейшие применения квантовой механики.	8	12	подготовка домашнего задания	6	домашнее задание
12.	Тема 12. ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА Основные принципы статистической физики.	8	13-14	подготовка домашнего задания	6	домашнее задание
13.	Тема 13. Общие методы статистической физики.	8	15	подготовка к контрольной работе	6	контрольная работа

ı	N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1	4. вели терм	14. подинамические чины и одинамические ношения.	8	16-17	подготовка домашнего задания	1 8 1	домашнее задание
1	5. Тема газы	. 15. Идеальные	8	18	подготовка домашнего задания	1 4 1	домашнее задание
	Итог	0				72	

5. Образовательные технологии, включая интерактивные формы обучения

Курсы лекций и семинарских занятий, организованные по стандартной технологии

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. ЭЛЕКТРОДИНАМИКА. Введение.

устный опрос, примерные вопросы:

Заряды и частицы. Теоретическое описание электромагнитных сил. Устный опрос по теме"Заряды и частицы. Теоретическое описание электромагнитных сил"

Тема 2. Уравнения Максвелла-Лоренца.

домашнее задание, примерные вопросы:

Первое, второе и третье уравнения Максвелла. Закон сохранения заряда. Четвертое уравнение Максвелла. Задачи по теме "Уравнения Максвелла-Лоренца" из [1].

Тема 3. Электростатическое поле.

домашнее задание, примерные вопросы:

Задачи по теме "Электростатическое поле" из [1].

Тема 4. Электромагнитное поле постоянных токов - магнитостатика.

контрольная работа, примерные вопросы:

Задачи по теме "Электромагнитное поле постоянных токов - магнитостатика" из [1]. 1. По тонкому кольцу радиуса R равномерно распределен заряд q. Найти модуль напряженности электрического поля на оси кольца на расстоянии z. 2. По центральному проводнику радиуса а длинного коаксиального кабеля и по наружному цилиндрическому проводнику (с внутренним радиусом b и внешним радиусом c) текут одинаковые по величине, но противоположные по направлению токи J. Определить напряженность магнитного поля.

Тема 5. Уравнения Максвелла.

домашнее задание, примерные вопросы:

адачи по теме "Уравнения Максвелла" из [1].

Тема 6. Высокочастотные электромагнитные поля.

домашнее задание, примерные вопросы:

Задачи по теме "Высокочастотные электромагнитные поля" из [1].

Тема 7. КВАНТОВАЯ МЕХАНИКА Введение

домашнее задание, примерные вопросы:

Задачи по теме "КВАНТОВАЯ МЕХАНИКА Введение" из [2].

Тема 8. Математический аппарат квантовой механики

домашнее задание, примерные вопросы:

Задачи по теме "Математический аппарат квантовой механики" из [2].

Тема 9. Физическое значение операторов

контрольная работа, примерные вопросы:

Задачи по теме "Физическое значение операторов" из [2]. 1. Задача на коммутаторы. 2. Задача на собственные функции и собственные значения

Тема 10. Вероятностное толкование квантовой механики

домашнее задание, примерные вопросы:

Задачи по теме "Вероятностное толкование квантовой механики" из [2].

Тема 11. Простейшие применения квантовой механики.

домашнее задание, примерные вопросы:

Задачи по теме "Простейшие применения квантовой механики" из [2].

Тема 12. ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА Основные принципы статистической физики.

домашнее задание, примерные вопросы:

Задачи по теме "ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА Основные принципы статистической физики" из [3].

Тема 13. Общие методы статистической физики.

контрольная работа, примерные вопросы:

Задачи по теме "Общие методы статистической физики" из [3]. Твердое тело состоит из N не взаимодействующих между собой ядер со спином 1. Каждое ядро может находиться в одном из трех квантовых состояний, причем два состояния имеют энергию є, а энергия третьего состояния равна 0. Вывести выражение для теплоемкости Cv ядер.

Тема 14. Термодинамические величины и термодинамические соотношения.

домашнее задание, примерные вопросы:

Задачи по теме "Термодинамические величины и термодинамические соотношения" из [3].

Тема 15. Идеальные газы.

домашнее задание, примерные вопросы:

Задачи по теме "Идеальные газы" из [3].

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Экзамены в соответствии с приведенной выше программой; контрольные работы, формируемые на основе учебников:

- 1. Батыгин В.В., Топтыгин И.Н. Сборник задач по электродинамике, М.: РХД, 2002. http://www.kpfu.ru/docs/F1495217310/Batygin Toptygin Sbornik zadach po elektrodinamike.djvu
- 2. Кочелаев Б.И. Квантовая теория (Конспект лекций), Казань, изд. КФУ, 2013. http://www.kpfu.ru/docs/F1738320152/Quantum Theory.pdf
- 3. Аминов Л.К. Термодинамика и статистическая физика (конспекты лекций и задачи для студентов физического факультета), Казань, изд. КГУ, 2008.

http://www.kpfu.ru/docs/F2096324044/Thermodynamics_and_statistical_physics.pdf

Указанныеучебники используется также для самостоятельной работы студентов.

Вопросы к экзамену

- 1. Заряды и частицы. Теоретическое описание электромагнитных сил.
- 2. Первое, второе и третье уравнения Максвелла.
- 3. Закон сохранения заряда. Четвертое уравнение Максвелла.
- 4. Общая характеристика уравнений Максвелла-Лоренца.
- 5. Потенциалы электромагнитного поля. Градиентная инвариантность уравнений электродинамики.
- 6. Классификация задач электродинамики.

- 7. Электростатическое поле.
- 8. Электростатическое поле точечного заряда и элементарного диполя.
- 9. Потенциал системы зарядов на больших расстояниях от нее.
- 10. Энергия системы зарядов во внешнем поле.
- 11. Энергия взаимодействия зарядов и энергия электростатического поля.
- 12. Закон Био-Савара-Лапласа.
- 13. Магнитное поле системы токов на больших расстояниях от нее.
- 14. Энергия магнитного диполя во внешнем магнитном поле.
- 15. Усреднение уравнений Максвелла-Лоренца.
- 16. Полнота уравнений Максвелла. Материальные уравнения.
- 17. Плоские электромагнитные волны в однородном изотропном диэлектрике.
- 18. Свойства плоских электромагнитных волн.
- 19. Классический способ описания явлений.
- 20. Область применимости классического способа описания явлений. Соотношения неопределенности Гейзенберга.
- 21. Квантовый способ описания явлений. Понятие потенциальной возможности в квантовой физике.
- 22. Квантовая механика и задачи на линейные операторы.
- 23. Операторы.
- 24. Собственные значения и собственные функции операторов.
- 25. Ортогональность, нормировка и замкнутость системы собственных функций.
- 26. Толкование собственных значений оператора. Операторы для координат и импульсов.
- 27. Собственные значения и собственные функции оператора импульса.
- 28. Квантовое описание состояния системы. Условия возможности одновременного измерения физических величин.
- 29. Оператор момента импульса.
- 30. Оператор энергии.
- 31. Изменение состояния системы во времени. Операторы как функции от времени.
- 32. Математическое ожидание в теории вероятностей и квантовой механике.
- 33. Стационарные состояния.
- 34. Одномерное силовое поле. Свободная частица.
- 35. Одномерное силовое поле. Потенциальный порог.
- 36. Одномерное силовое поле. Потенциальный барьер.
- 37. Частица в одномерной прямоугольной потенциальной яме бесконечной глубины.
- 38. Одномерный гармонический осциллятор.
- 39. Средние значения и флуктуации.
- 40. Метод ансамблей.
- 41. Функция статистического распределения. Матрица плотности.
- 42. Уравнение движения для матрицы плотности. Теорема Лиувилля.
- 43. Микроканоническое распределение.
- 44. Энтропия. Закон неубывания энтропии.
- 45. Температура.
- 46. Каноническое распределение.
- 47. Большое каноническое распределение.
- 48. Адиабатический процесс.
- 49. Первое начало термодинамики.
- 50. Термодинамические функции.
- 51. Зависимость термодинамических функций от числа частиц.

- 52. Условия равновесия системы. Поведение термодинамических функций в равновесных и неравновесных процессах.
- 53. Термодинамические неравенства.
- 54. Связь между теплоемкостями.
- 55. Второе начало термодинамики.
- 56. Третье начало термодинамики (теорема Нернста).
- 57. Термодинамический смысл параметров канонического и большого канонического распределений.
- 58. Распределения Ферми-Дирака и Бозе-Эйнштейна.
- 59. Уравнение состояния идеальных газов.

7.1. Основная литература:

- 1. Теоретическая физика: в 10 томах: учебное пособие для студентов физических специальностей университетов / Л.Д. Ландау и Е.М. Лифшиц; под ред. Л.П. Питаевского.?Изд. 8-е, стер..?Москва: Физматлит, 2006.?; 22.?ISBN 5-9221-0053-X.
- Т. 2: Теория поля.?2006.?533 с..?ISBN 5-9221-0056-4((Т. 2)).
- 2. Кочелаев Б.И. Квантовая теория (Конспект лекций),Казань, изд. КФУ, 2013. http://www.kpfu.ru/docs/F1738320152/Quantum_Theory.pdf
- 3.Кочелаев, Борис Иванович. Квантовая теория: конспект лекций / Б. И. Кочелаев; Казан. федер. ун-т, Ин-т физики, Каф теорет. физики.?[2-е изд., перераб., доп. и испр.].?Казань: [Казанский университет], 2013.?222 с.; 21.?Библиогр.: с. 222.
- 4. Аминов Л.К. Термодинамика и статистическая физика (конспекты лекций и задачи для студентов физического факультета), Казань, изд. КГУ, 2007. 179c.http://www.kpfu.ru/docs/F2096324044/Thermodynamics and statistical physics.pdf

7.2. Дополнительная литература:

1.Кузнецов, С. И. Ускорители заряженных частиц. Курс физики с примерами решения задач [Электронный ресурс] : учебное пособие / С. И. Кузнецов; Национальный исследовательский Томский политехнический университет. - Томск: Изд-во Томского политехнического университета, 2011. - 45 с. - Режим доступа: http://znanium.com/bookread.php?book=417628

2.Физика: Учебное пособие / А.В. Ильюшонок, П.В. Астахов, И.А. Гончаренко и др. - М.: НИЦ Инфра-М; Мн.: Нов.знание, 2013. - 600 с.

http://znanium.com/bookread.php?book=397226

3.Аминов, Линар Кашифович. Термодинамика и статистическая физика: конспекты лекций и задачи: для студентов физического факультета / Л.К. Аминов; Казан. гос. ун-т, Физ. фак..?Казань: Издательство Казанского государственного университета, 2008.?179 с.:

7.3. Интернет-ресурсы:

Аминов Л.К. Термодинамика и статистическая физика (конспекты лекций и задачи для студентов физического факультета), Казань, изд. КГУ, 2008. -

http://www.kpfu.ru/docs/F2096324044/Thermodynamics_and_statistical_physics.pdf

Батыгин В.В., Топтыгин И.Н. Сборник задач по электродинамике, М.: РХД, 2002. -

http://www.kpfu.ru/docs/F1495217310/Batygin Toptygin Sbornik zadach po elektrodinamike.djvu

Кочелаев Б.И. Квантовая теория (Конспект лекций), Казань, изд. КФУ, 2013. -

http://www.kpfu.ru/docs/F1738320152/Quantum_Theory.pdf

Научная энциклопедия на сайте - http://elementy.ru/physics

Hayчная энциклопедия на сайте - http://ru.wikipedia.org/wiki/Квантовая физика

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Физика" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебные аудитории для проведения лекционных и семинарских занятий.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010100.62 "Математика" и профилю подготовки Общий профиль .

Автор(ы):			
Деминов Р.Г			
" "	_201_	г.	
Рецензент(ы): Прошин Ю.Н.			
""	201	г.	