МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Инженерно-технологический факультет

подписано электронно-цифровой подписью

201 г

Программа дисциплины

<u>Техническая эксплуатация ходовой части автомобилей и систем, обеспечивающих безопасность движения</u> Б1.В.ОД.12

łаправление подготовки: <u>23.03.01 - Технология транспортных процессов</u>	
Ірофиль подготовки: <u>Эксплуатация транспортных средств</u>	
(валификация выпускника: <u>бакалавр</u>	
Рорма обучения: <u>очное</u>	
Ізык обучения: <u>русский</u>	
Автор(ы):	
<u> Мухутдинов Р.Х.</u>	
Рецензент(ы):	
<u>Епанешников В.В.</u>	
СОГЛАСОВАНО:	
Ваведующий(ая) кафедрой: Седов С. А. Іротокол заседания кафедры No от """ 201г	
иебно-методическая комиссия Елабужского института КФУ (Инженерно-технологически»	1Й

Регистрационный No 967381519

Протокол заседания УМК No от "

Казань 2019

факультет):

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Мухутдинов Р.Х. Кафедра общей инженерной подготовки Инженерно-технологический факультет, RHMuhutdinov@kpfu.ru

1. Цели освоения дисциплины

Цель дисциплины - сформировать у обучающихся четкое представление об основных принципах и возможностях диагностирования технического состояния автотранспортных средств.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.12 Дисциплины (модули)" основной образовательной программы 23.03.01 Технология транспортных процессов и относится к обязательным дисциплинам. Осваивается на 3 курсе, 5 семестр.

Дисциплина 'Техническая эксплуатация ходовой части автомобилей и систем обеспечивающих безопасность движения' входит в 'дисциплины по выбору' по направлению подготовки бакалавров 'Эксплуатация транспортно-технологических машин и комплексов'.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции			
ОК-3 (общекультурные	характеризуемой ?способностью принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с			
компетенции)	техническими заданиями и использованием стандартных средств автоматизации проектирования?;			

В результате освоения дисциплины студент:

1. должен знать:

- объект (ходовой части, системы, обеспечивающие безопасность дорожного движения (БДД) и предмет курса (анализ и синтез технической эксплуатации автомобилей);
- модели элементов ТО (технического обслуживания) и текущего ремонта (TP) в производственных условиях станций технического обслуживания(СТОА) и автотранспортных предприятий (АТП);
- экономико-математические модели элементов ТО и ТР в технико-экономических расчётах;
- основные факторы, влияющие на надёжность и долговечность автомобиля;
- сущность диагностики и её физические основы;
- методы технико-экономических расчетов в СТОА;
- организацию ТО иТР автомобилей.

2. должен уметь:

- выбирать, обосновывая свой выбор, методы организации технологического процесса технического обслуживания (ТО) и текущего ремонта (ТР) автомобилей;
- определять на основе технико-экономического анализа оптимальную технологию ТО и ТР;
- оценивать техническое состояние автомобиля методом диагностики;
- определять методы диагностики технического состояния автомобиля:

- разрабатывать мероприятия по максимальному повышению долговечности и технической готовности автомобиля в процессе их использования.
- 3. должен владеть:
- навыками организации технической эксплуатации транспортных и транспортно технологических машин и комплексов;
- методиками выполнения процедур стандартизации и сертификации;
- способностью к работе в малых инженерных группах;
- методиками безопасной работы и приемами охраны труда.
- 4. должен демонстрировать способность и готовность:
- использовать основы правовых знаний в различных сферах деятельности;
- решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности;
- понимать научные основы технологических процессов в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем:
- применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем;
- применять в практической деятельности принципы рационального использования природных ресурсов и защиты окружающей среды;
- к разработке и внедрению технологических процессов, использованию технической документации, распорядительных актов предприятия;
- осуществлять экспертизу технической документации, надзор и контроль состояния и эксплуатации подвижного состава, объектов транспортной инфраструктуры, выявлять резервы, устанавливать причины неисправностей и недостатков в работе, принимать меры по их устранению и повышению эффективности использования;
- использовать организационные и методические основы метрологического обеспечения для выработки требований по обеспечению безопасности перевозочного процесса;
- применять правовые, нормативно-технические и организационные основы организации перевозочного процесса и обеспечения безопасности движения транспортных средств в различных условиях.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 6 зачетных(ые) единиц(ы) 216 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 5 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю

Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной р их трудоемк (в часах Практические занятия	аботы, сость	Текущие формы контроля
.	Тема 1. Назначение, особенности эксплуатации рулевых управлений и приводов. Основные отказы узлов и деталей амортизаторов.	5		6	3	6	
	Тема 2. Основные сведения об эксплуатации тормозных систем. Особенности диагностирования и регулирования тормозных систем.	5		6	3	6	
	Тема 3. Назначение, область применения шин и колес. Причины преждевременного износа протектора.	5		6	3	6	
	Тема 4. Монтажно-демонтажны работы шин. Основные характеристики систем, приборов и элементов освещения.	e 5		6	3	6	
	Тема 5. Требования к работе различных видов сигнализации. Требования к техническому состоянию по условиям безопасности движения.	5		6	3	6	
	Тема 6. Назначение, область применения шин и колес. Причины преждевременного износа протектора.	5		6	3	6	
	Тема . Итоговая форма контроля	5		0	0	0	Экзамен
	Итого			36	18	36	

4.2 Содержание дисциплины

Тема 1. Назначение, особенности эксплуатации рулевых управлений и приводов. Основные отказы узлов и деталей амортизаторов.

лекционное занятие (6 часа(ов)):

Назначение, особенности эксплуатации, компоновочно-регулировочные решения рулевых управлений и приводов (червячных, реечных с усилителями и без). Требования к техническому состоянию, нормативы и технические условия. Основные отказы узлов и деталей амортизаторов, влияние на эксплуатационные характеристики автомобиля и на безопасность его движения; характерные неисправности амортизаторов автомобилей отечественного и иностранного производства.

практическое занятие (3 часа(ов)):

1. Характерные отказы узлов подвесок. 2. Характерные отказы рулевых управлений. 3. Влияние отказов узлов подвесок и рулевых управлений на эксплуатационные характеристики автомобиля и безопасность его движения.

лабораторная работа (6 часа(ов)):

Лабораторная работа ♦ 2 Диагностирование люфта рулевого управления Назначение, устройство и принцип работы Порядок работы. Подготовка люфтомера к установке на автомобиле Измерение люфта

Тема 2. Основные сведения об эксплуатации тормозных систем. Особенности диагностирования и регулирования тормозных систем.

лекционное занятие (6 часа(ов)):

Основные сведения об эксплуатации тормозных систем различных типов. Требования к работе одно-двух контурных систем легковых автомобилей, многоконтурных грузовых, стояночных тормозных механизмов, усилителей и антиблокирующих систем: нормативы, параметры технического состояния. Регулировка приводов, механизмов управления, положения тормозных колодок дисков и барабанов, пневматических аккумуляторов, регуляторов тормозных сил. Особенности диагностирования и регулирования тормозных систем с антиблокировочными механизмами.

практическое занятие (3 часа(ов)):

4. Влияние технического состояния узлов подвесок и рулевых управлений на эксплуатационные характеристики автомобиля и безопасность его движения. 5. Критерии предельного состояния элементов и узлов. 6. Влияние эксплуатационных факторов на безотказность и характеристики технического состояния.

лабораторная работа (6 часа(ов)):

Лабораторная работа ◆ 8 Диагностирование тормозной системы Контрольно-диагностическое оборудование Состав и порядок выполнения работы

Тема 3. Назначение, область применения шин и колес. Причины преждевременного износа протектора.

лекционное занятие (6 часа(ов)):

Назначение, область применения, преимущества и недостатки в эксплуатации шин и колес различных типов и конструктивных решений. Маркировка, правила подбора и комплектации автомобиля шинами и колесами. Причины преждевременного износа протектора. Влияние углов установки колес, внутреннего давления воздуха, дисбаланса на темп износа протектора и характер движения автомобиля по дороге.

практическое занятие (3 часа(ов)):

1.Технологии обнаружения и устранения отказов и неисправностей: диагностирование состояния амортизаторов (со снятием и без снятия автомобиля). 2. Технологии обнаружения и устранения отказов и неисправностей: рулевых механизмов и их приводов. 3. Технологии обнаружения и устранения отказов и неисправностей: геометрического положения колес относительно плоскости автомобиля (углы наклона оси поворотов колес, углы развала и схождения, параллельность мостов).

лабораторная работа (6 часа(ов)):

Лабораторная работа ◆ 3 Установка углов колес автомобиля на оптическом стенде R/108 Устройство стенда и подготовка к измерениям Компенсация биения колеса и выравнивание Угол продольного наклона Угол наклона шкворня Схождение Регулировка схождения Центровка рулевого управления Сдвиг колес Проверка задней полуоси (рекомендуется использовать выдвижные панели) Выравнивание положения задних колес

Тема 4. Монтажно-демонтажные работы шин. Основные характеристики систем, приборов и элементов освещения.

лекционное занятие (6 часа(ов)):

Монтажно-демонтажные работы. Ремонт повреждений шин "горячей" и "холодной" вулканизацией. Углубление рисунка протектора. Восстановительный ремонт изношенного протектора. Основные характеристики систем, приборов и элементов освещения автомобилей разных типов: ГОСТы, технические требования. Отказы и неисправности в эксплуатации, способы выявления и устранения. Технологии диагностирования и регулировки фар.

практическое занятие (3 часа(ов)):

4. Приспособления для выпрессовки подвески. Организация рабочих постов по диагностированию, регулировке, ремонту ходовой части автомобилей. 5. Приспособления для выпрессовки шкворней. 6. Приспособления для безопасного снятия пружин

лабораторная работа (6 часа(ов)):

Лабораторная работа ◆ 3 Установка углов колес автомобиля на оптическом стенде R/108 Устройство стенда и подготовка к измерениям Компенсация биения колеса и выравнивание Угол продольного наклона Угол наклона шкворня Схождение Регулировка схождения Центровка рулевого управления Сдвиг колес Проверка задней полуоси (рекомендуется использовать выдвижные панели) Выравнивание положения задних колес

Тема 5. Требования к работе различных видов сигнализации. Требования к техническому состоянию по условиям безопасности движения.

лекционное занятие (6 часа(ов)):

Требования к работе звуковой сигнализации, стоп-сигнала, реле поворотов и аварийного освещения, реле и механизму стеклоочистителя, охранным сигнализациям. Инструментальный контроль как путь выполнения ГОСТ 25278- 91 "Требования к техническому состоянию по условиям безопасности движения" Основные характеристики систем, приборов и элементов.

практическое занятие (3 часа(ов)):

Особенности эксплуатации пневматических подвесок. Особенности эксплуатации рулевых управлений. Особенности эксплуатации червячных приводов.

лабораторная работа (6 часа(ов)):

3. Влияние условий эксплуатации на техническое состояние автомобилей. 4. Классификация отказов.

Тема 6. Назначение, область применения шин и колес. Причины преждевременного износа протектора.

лекционное занятие (6 часа(ов)):

Назначение, область применения, преимущества и недостатки в эксплуатации шин и колес различных типов и конструктивных решений. Маркировка, правила подбора и комплектации автомобиля шинами и колесами. Причины преждевременного износа протектора. Влияние углов установки колес, внутреннего давления воздуха, дисбаланса на темп износа протектора и характер движения автомобиля по дороге.

практическое занятие (3 часа(ов)):

4. Влияние технического состояния узлов подвесок и рулевых управлений на эксплуатационные характеристики автомобиля и безопасность его движения. 5. Критерии предельного состояния элементов и узлов. 6. Влияние эксплуатационных факторов на безотказность и характеристики технического состояния.

лабораторная работа (6 часа(ов)):

1. Цели и задачи исследования основных закономерностей изменения технического состояния автомобилей в процессе эксплуатации. 2. Основные причины изменения технического состояния автомобилей.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

	Раздел		Неделя	Виды самостоятельной	Трудоемкость	Формы контроля
N	Раздел Дисциплины	Семестр	Неделя семестра	работы студентов	(в часах)	самостоятельной работы
1.	Тема 1. Назначение, особенности эксплуатации рулевых управлений и приводов. Основные отказы узлов и деталей амортизаторов.	5		Тестирование	15	Тестирование
2.	Тема 2. Основные сведения об эксплуатации тормозных систем. Особенности диагностирования и регулирования тормозных систем.	5		Тестирование	15	Тестирование
3.	Тема 3. Назначение, область применения шин и колес. Причины преждевременного износа протектора.	5		Устный опрос	15	Устный опрос
4.	Тема 4. Монтажно-демонтажны работы шин. Основные характеристики систем, приборов и элементов освещения.	e 5		Устный опрос	15	Устный опрос
5.	Тема 5. Требования к работе различных видов сигнализации. Требования к техническому состоянию по условиям безопасности движения.	5		Лабораторные работы	15	Лабораторные работы
6.	Тема 6. Назначение, область применения шин и колес. Причины преждевременного износа протектора.	5		Лабораторные работы	15	Лабораторные работы
	Итого				90	

5. Образовательные технологии, включая интерактивные формы обучения

мультимедийная аудитория компьютерный класс лингафонный кабинет специализированная лаборатория

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Назначение, особенности эксплуатации рулевых управлений и приводов. Основные отказы узлов и деталей амортизаторов.

Тестирование, примерные вопросы:

1. Какой узел не относится к ходовой части автомобиля: а) рама; б) передний мост; в) задний мост; г) рессорная подвеска; д) колёса; е) грузовая платформа; ж) амортизатор; з) шины. 2. Что означает понятие "база автомобиля": а) это всё то, что входит в устройство автомобиля; б) это объём грузовой платформы; в) это расстояние между серединами шин передних или задних колёс; г) это расстояние между осями передних и задних колёс. З. Какое соединение применяется при соединении составных частей рамы: а) болтовое: б) шпилечное: в) винтовое: г) заклёпочное; д) сварочное. 4. Какая часть не входит в состав автомобильной покрышки: а) каркас; б) беговая дорожка (протектор); в) бортовая часть; г) боковая часть; д) вулканизационная часть; е) всё перечисленное. 5. Каких типов автомобильных шин не существуют: а) диагональные; б) радиальные; в) вертикальные. 6. Амортизаторы на автомобиле выполняют: а) преобразование возвратно-поступательного движения во вращательное; б) уравновешивают крутильные колебания; в) гашение колебаний; е) увеличение динамического фактора. 7. Что нужно соблюдать при выполнении демонтажа и монтажа автомобильных шин: а) производить работы вдали от автомобиля; б) изучить компьтерную диагностику данной операции; в) соблюдать правила техники безопасности при выполнении работ; д) выполнять работы с использованием гидропресса. 8. Какая минимальная остаточная глубина протектора должна быть у легковых автомобилей: а) 0,8 мм; б) 1,0 мм; в) 1,6 мм; г) 2,0 мм. 9. Какая минимальная остаточная глубина протектора должна быть у грузовых автомобилей: 0,8 мм; б) 1,0 мм; в) 1,6 мм; г) 2,0 мм. 10. Какая неисправность не относится к ходовой части автомобиля: а) увеличенное схождение колёс; б) увеличенный развал колёс; в) порезы, обнажающие корд шины; г) увеличенный износ тормозных колодок; д) погнутость рамы; е) трещины на диске колеса; ж) увеличенный износ шкворней.

Тема 2. Основные сведения об эксплуатации тормозных систем. Особенности диагностирования и регулирования тормозных систем.

Тестирование, примерные вопросы:

11. Какая система не относится к управлению автомобилем: а) тормозная система; б) система питания; в) рулевое управление. 12. Компрессор выполняет следующие действия: а) нагнетает масло в систему смазки; б) заставляет циркулировать охлаждающую жидкость; в) создаёт необходимое давление воздуха для тормозных камер колёс; г) смешивает топливо и воздух в определённой пропорции для сгорания. 13. Гидроусилитель выполняет следующие действия: а) увеличивает циркуляцию охлаждающей жидкости; б) увеличивает давление масла в системе смазки; в) нагнетает дизельное топливо к форсункам; г) обеспечивает вращение рулевого колеса с небольшим усилием. 14. Какая неисправность не относится к рулевому управлению автомобиля: а) повышенный свободный ход рулевого колеса; б) заедание подшипников рулевого механизма; в) повышенный износ вкладышей коленчатого вала; г) погнутость рулевых тяг; д) подтекание смазки из картера рулевого механизма. 15. Почему нельзя смешивать тормозные жидкости различных марок: а) они легко смешиваются; б) они взрываются; в) они расслаиваются; г) они затвердевают; д) они превращаются в желеобразную массу. 16. Какая неисправность не относится к тормозной системе автомобиля: а) подтекание тормозной жидкости; б) поломка пружины, стягивающей колодки; в) износ подвесного подшипника; г) износ подшипников коленчатого вала компрессора; д) негерметичность баллонов ресивера; е) износ кулачка эксцентрика. 17. Сколько человек нужно для проведения операции по удалению воздуха, попавшего в гидропривод тормозной системы: а) один; б) два; в) три; г) чем больше, тем лучше. 18. Какая операция по ТО тормозной системы с пневмоприводом должна быть выполнена при переходе автомобиля с весенне-летнего периода эксплуатации на осенне-зимний период эксплуатации: а) покрасить шкив привода компрессора; б) отрегулировать привод гидроусилителя; в) удалить конденсат из баллонов ресивера; г) заменить резиновые мембраны тормозных камер; д) прокачать воздух с тормозных шлангов.

Тема 3. Назначение, область применения шин и колес. Причины преждевременного износа протектора.

Устный опрос, примерные вопросы:

1. Характерные отказы узлов подвесок. 2. Характерные отказы рулевых управлений. 3. Влияние отказов узлов подвесок и рулевых управлений на эксплуатационные характеристики автомобиля и безопасность его движения. 4. Влияние технического состояния узлов подвесок и рулевых управлений на эксплуатационные характеристики автомобиля и безопасность его движения. 5. Критерии предельного состояния элементов и узлов. 6. Влияние эксплуатационных факторов на безотказность и характеристики технического состояния.

Тема 4. Монтажно-демонтажные работы шин. Основные характеристики систем, приборов и элементов освещения.

Устный опрос, примерные вопросы:

1.Технологии обнаружения и устранения отказов и неисправностей: диагностирование состояния амортизаторов (со снятием и без снятия автомобиля). 2. Технологии обнаружения и устранения отказов и неисправностей: рулевых механизмов и их приводов. 3. Технологии обнаружения и устранения отказов и неисправностей: геометрического положения колес относительно плоскости автомобиля (углы наклона оси поворотов колес, углы развала и схождения, параллельность мостов). шкворней4. Приспособления для выпрессовки подвески. Организация рабочих постов по диагностированию, регулировке, ремонту ходовой части автомобилей. 5. Приспособления для выпрессовки шкворней. 6. Приспособления для безопасного снятия пружин

Тема 5. Требования к работе различных видов сигнализации. Требования к техническому состоянию по условиям безопасности движения.

Лабораторные работы, примерные вопросы:

Диагностирование люфта рулевого управления Назначение, устройство и принцип работы

Тема 6. Назначение, область применения шин и колес. Причины преждевременного износа протектора.

Лабораторные работы, примерные вопросы:

Диагностирование тормозной системы Контрольно-диагностическое оборудование

Итоговая форма контроля

экзамен (в 5 семестре)

Примерные вопросы к экзамену:

Вопросы к экзамену по дисциплине Техническая эксплуатация ходовой части автомобилей и систем, обеспечивающих безопасность движения:

- 1. Цели и задачи исследования основных закономерностей изменения технического состояния автомобилей в процессе эксплуатации.
- 2. Основные причины изменения технического состояния автомобилей.
- 3. Влияние условий эксплуатации на техническое состояние автомобилей.
- 4. Классификация отказов.
- 5. Классификация закономерностей, характеризующих техническое состояние автомобилей. Свойства и основные показатели надёжности автомобилей.
- 6. Особенности эксплуатации пружинных подвесок.
- 7. Особенности эксплуатации рессорных подвесок.
- 8. Особенности эксплуатации пневматических подвесок.
- 9. Особенности эксплуатации рулевых управлений.
- 10. Особенности эксплуатации червячных приводов.

7.1. Основная литература:

- 1. Анопченко, В. Г. Практикум по теории движения автомобиля [Электронный ресурс]: Учеб. пособие / В. Г. Анопченко. 2-е изд., перераб. и доп. Красноярск: Сиб. федер. ун-т, 2013. 116 с. ISBN 978-5-7638-2494-0 Режим доступа: http://znanium.com/bookread2.php?book=508078
- 2. Ведущие мосты тракторов и автомобилей: Учебное пособие / Кобозев А.К., Швецов И.И., Койчев В.С. М.:СтГАУ 'Агрус', 2016. 64 с.: ISBN Режим доступа: http://znanium.com/bookread2.php?book=976305
- 3. Системы безопасности автомобилей: Учебное пособие / Савич Е.Л., Капустин В.В. М.:НИЦ ИНФРА-М, 2016. 445 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт 7БЦ) ISBN 978-5-16-011868-0 Режим доступа: http://znanium.com/bookread2.php?book=544695

7.2. Дополнительная литература:

- 1. Безопасность дорожного движения : учеб. пособие / А.А. Беженцев. М. : Вузовский учебник, ИНФРА-М, 2017. 272 с. Режим доступа:http://znanium.com/bookread2.php?book=924831
- 2. Климатическая система в современном автомобиле: Практическое пособие / Митин М.А., Пчелинцев Н.И.; Под ред. Митин М.В. М.:СОЛОН-Пр., 2013. 72 с.: ISBN 978-5-91359-120-3 Режим доступа: http://znanium.com/bookread2.php?book=882808
- 3. Системный анализ проблем обеспечения безопасности дорожного движения автотранспорта: Учебное пособие / Белокуров В.П., Черкасов О.Н., Белокуров С.В. Воронеж:ВГЛТУ им. Г.Ф. Морозова, 2014. 103 с. Режим доступа: http://znanium.com/bookread2.php?book=858543
- 4. Транспортная безопасность автомобильных дорог: Учебное пособие / Артемов А.Ю., Белокуров В.П., Струков Ю.В. Воронеж:ВГЛТУ им. Г.Ф. Морозова, 2016. 126 с. Режим доступа: http://znanium.com/bookread2.php?book=858589
- 5. Экология и экологическая безопасность автомобиля: Учебник / Графкина М. В., Михайлов В. А., Иванов К. С.- 2-е изд., испр. и доп. М.: Форум, НИЦ ИНФРА-М, 2016. 320 с.: 60х90 1/16. (Профессиональное образование) (Переплёт) ISBN 978-5-00091-117-4 Режим доступа: http://znanium.com/bookread2.php?book=513950

7.3. Интернет-ресурсы:

Государственная публичная научно-техническая библиотека России - www.gpntb.ru.

Российская государственная библиотека - www.rsl.ru.

Российская национальная библиотека - http://nir.ru/

Федеральное хранилище - http://school-collection.edu.ru/

Федеральный центр информационно-образовательных ресурсов - http://fcior.edu.ru/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Техническая эксплуатация ходовой части автомобилей и систем, обеспечивающих безопасность движения" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

мультимедийная аудитория компьютерный класс специализированная лаборатория

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 23.03.01 "Технология транспортных процессов" и профилю подготовки Эксплуатация транспортных средств .

Автор(ы):								
Мухутдин	нов Р.Х			_				
"_"	201	Г.						
Рецензен	нт(ы):							
Епанешн	иков В.В							
" "	201	Г.						