МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" Институт фундаментальной медицины и биологии

УТВЕРЖДАЮ
еятельности КФУ

Программа дисциплины

Молекулярная генетика Б1.В.ДВ.8

Направление подготовки: <u>06.03.01 - Биология</u> Профиль подготовки: <u>не предусмотрено</u> Квалификация выпускника: <u>бакалавр</u>

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2017

Автор(ы): <u>Каюмов А.Р.</u> **Рецензент(ы)**: <u>Чернов В.М.</u>

<u>СОГЛАСОВАНО:</u>

Заведующий (ая) кафедрой: Чер	нов В. М.					
Протокол заседания кафедры N	№ от "_	"		20_	_Г.	
Учебно-методическая комиссия	Института	фунд	аментальной	меді	ицины и	биологии
Протокол заседания УМК No	от "	11	20	Г.		

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
- 4.2. Содержание дисциплины
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 6.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения
- 6.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 6.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций
- 7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
- 7.1. Основная литература
- 7.2. Дополнительная литература
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

Программу дисциплины разработал(а)(и) доцент, д.н. (доцент) Каюмов А.Р. (кафедра генетики, Центр биологии и педагогического образования), Ajrat.Kajumov@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Выпускник, освоивший дисциплину, должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1	способностью эксплуатировать современную аппаратуру и оборудование для выполнения научно-исследовательских полевых и лабораторных биологических работ
ПК-8	способностью использовать основные технические средства поиска научно-биологической информации, универсальные пакеты прикладных компьютерных программ, создавать базы экспериментальных биологических данных, работать с биологической информацией в глобальных компьютерных сетях

Выпускник, освоивший дисциплину:

Должен знать:

знать молекулярные механизмы основных генетических процессов, обеспечивающих наследственность и изменчивость организмов;

знать современные представления о способах регуляции действия генов;

Должен уметь:

ориентироваться в вопросах, связанных с методами генотерапии и использовании ГМО.

Должен владеть:

- обладать теоретическими знаниями о молекулярной организации генов и геномов;
- -обладать навыками анализа работ по генетической инженерии, конструированию векторов и двухчелночных систем.

Должен демонстрировать способность и готовность:

знания, касающиеся вопросов применения генетической инженерии в сельскохозяй-ственной биотехнологии и микробиологической промышленности

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.8 Дисциплины (модули)" основной профессиональной образовательной программы 06.03.01 "Биология (не предусмотрено)" и относится к дисциплинам по выбору. Осваивается на 4 курсе в 7 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) на 72 часа(ов).

Контактная работа - 42 часа(ов), в том числе лекции - 20 часа(ов), практические занятия - 10 часа(ов), лабораторные работы - 12 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 30 часа(ов).

Контроль (зачёт / экзамен) - 0 часа(ов).

Форма промежуточного контроля дисциплины: зачет в 7 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

	N	Разделы дисциплины / модуля	Семестр		Виды и ча контактной ра их трудоемк (в часах Практические	аботы, ость) Лабораторные	Самостоятельная работа
-	N	Разделы дисциплины / модуля	Семестр	Виды и часы контактной работы, их трудоемкость (в часах)		Самостоятельная работа	
				Лекции	Практические занятия	Лабораторные работы	
ĺ	1.	Тема 1. Генетический код	7	2	0	2	4
Ī	2.	Тема 2. Репликация ДНК	7	2	0	0	4
[3.	Тема 3. Транскрипция	7	4	2	2	4
[Тема 4. Трансляция	7	2	2	2	4
4.2 C	9	ТЕРЖЕНЬОМЬЯ ЭЧЧЕКМЭР	7	2	2	2	4
Тема	6. 1	TERRET PERSONALING P	7	4	2	2	4

Центратьная догом молекулярной биологии, корректность высказывания Один ген- один белок, Один ген - одна биомолекула. Сравнение прокариот и зукариот. История открытия ДНК как носителя генетической информации. Экспериненты Гриффита, Чаргафа, Розалинд Франклин, Херши-Чейз. Модель Уотоона-Крика. Строение ДНК, образование связей между нуклеотидами. Размеры геномов организмов, механизмы упаковки ДНК в про- и эукариотах. Суперспирализация. Гистоновые белки, ступени упаковки ДНК в клетках эукариот.

Тема 2. Репликация ДНК

Особенности репликации прокариот и эукариот. Основные характеристики процесса репликации, 3 стадии процесса. Инициация репликации: точки ориджин архей, прокариот и эукариот. Инициация репликации в клетках кишечной палочки. Строение точки ориджин. Роль белков DnaA, SSB, геликазы. Элонгация. Понятие репликативной вилки и репликативного пузыря. Основные ферменты репликации. Лидирующая и отстающая цепи. Теломеры, функции. Теломеры как молекулярные часы деления клетки. Теломераза, принцип работы. Генетические заболевания, связанные с длиной теломер.

Тема 3. Транскрипция

Транскрипция - синтез РНК на ДНК матрице. Строение гена и оперона прокариот. Структура промотора генов прокариот. РНК-полимераза, строение, значение субъединиц фермента. Механизмы инициации в клетках прокариот. Сигма факторы и особенно механизмов регуляции транскрипции у бактерий. Конститутивные и индуцибельные промотеры. Механизмы репрессии: Образование помех (операторы), Подавление образования открытого комплекса, Подавление считывания промотора, Анти-активация, Анти-сигма факторыТерминация транскрипции. Механизмы активации: Регулируемое прикрепление полимеразы, Активация полимеразы, Активация промотера. Лактозный оперон, триптофановый оперон, арабинозный оперон. Двухкомпонентные системы трансдукции сигнала. Аттенуация. Строение гена эукариот. Структура промотора генов. РНК-полимераза, строение, значение субъединиц фермента. Механизмы инициации в клетках эукариот. Факторы транскрипции и особенно механизмы регуляции транскрипции у эукариот. Регуляции расплетания хроматина как основа эпигенетики. Процессинг мРНК.

Тема 4. Трансляция

Трансляция. Строение рибосом прокариот, значение субъединиц фермента. Механизмы инициации в клетках прокариот, факторы инициации. РНК термометры, механизм работы. Элонгация, механизмы транспептидирования, транслокации. Факторы элонгации. Образование полирибосом. Терминация трансляции. Механизмы инициации в клетках эукариот, факторы инициации 5' сар-зависимая инициация, модель замкнутой цепи. Механизмы подавления трансляции при заражении вирусами. Значение IRES сайтов.

Тема 5. Рекомбинация ДНК

Биологическая роль рекомбинации. Гомологичная рекомбинация, модель Холлидея. Роль белков RecABCD в гомологичной рекомбинации. Образование структур Холлидея и их разрешение белками RuvABC. Сайт специфическая рекомбинация, примеры. Сериновая и тирозиновая рекомбиназы. Рекомбинация у фага лямбда, структура генома, регуляция экспрессии генов, механизм принятия решения развития по лизогенному или литическому пути. Ніп-ревертаза у сальмонеллы. Транспозиция. Виды транспозонов.

Тема 6. Репарация.

Мутации - геномные, хромосомные, генные. Виды генных мутаций - точечные, сдвиг раки сичтывания. Причины возникновения мутаций. Механизм действия интеркалирующих соединений, алкилирование оснований, ошибки при репликации и транскрипции, образование ТТ-димеров. Мутагенное действие азотистой кислоты. Виды репарации ДНК. Эксцизионная репарация, основные белки, механизм распознавания и исправления ошибок. Міsmatch репарация, основные белки, механизм распознавания и исправления ошибок. Фотореактивация, , основные белки, механизм распознавания и исправления ошибок. Рекомбинационная репарация, основные белки, механизм распознавания и исправления ошибок. SOS-, основные белки, механизм распознавания и исправления ошибок. Umu-оперон, роль белка LexA.

Тема 7. Генетическая инженерия

Эндонуклеазы рестрикции. Полиморфизм длины рестрикционных фрагментов. Полимеразная цепная реакция. ПЦР в реальном времени. Методы анализа взаимодействия ДНК и белков - коэлюция, иммунопреципитация, задержка в геле, плазмонный резонанс. Использование транспозонов в генетической инженерии. Использование вирусов в генетической инженерии. Использование фагов в генетической инженерии. Клонирование. Плазмидные и вирусные векторы. Классическое клонирование, ТА-клонирование. Gateway-клонирование. Энзиматическая сборка ДНК по Гибсону

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301).

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений".

Положение от 29 декабря 2018 г. № 0.1.1.67-08/328 "О порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет".

Положение № 0.1.1.67-06/241/15 от 14 декабря 2015 г. "О формировании фонда оценочных средств для проведения текущей, промежуточной и итоговой аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет"".

Положение № 0.1.1.56-06/54/11 от 26 октября 2011 г. "Об электронных образовательных ресурсах федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"".

Регламент № 0.1.1.67-06/66/16 от 30 марта 2016 г. "Разработки, регистрации, подготовки к использованию в учебном процессе и удаления электронных образовательных ресурсов в системе электронного обучения федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет"".

Регламент № 0.1.1.67-06/11/16 от 25 января 2016 г. "О балльно-рейтинговой системе оценки знаний обучающихся в федеральном государственном автономном образовательном учреждении высшего образования "Казанский (Приволжский) федеральный университет"".

Регламент № 0.1.1.67-06/91/13 от 21 июня 2013 г. "О порядке разработки и выпуска учебных изданий в федеральном государственном автономном образовательном учреждении высшего профессионального образования "Казанский (Приволжский) федеральный университет"".

Методы изучения мутационной изменчивости микроорганизмов. -

http://kpfu.ru/portal/docs/F309357022/METODY.IZUChENIYa.MUTACIONNOJ.IZMENChIVOSTI.pdf

Практикум по молекулярной генетике - http://kpfu.ru/portal/docs/F455807507/Praktikum.po.mol.pdf Практическая молекулярная биология - http://molbiol.ru/

6. Фонд оценочных средств по дисциплине (модулю)

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения

Этап	Форма контроля	Оцениваемые компетенции	Темы (разделы) дисциплины
Семе	стр 7		
	Текущий контроль		
1	Тестирование		1. Генетический код 2. Репликация ДНК 3. Транскрипция

Этап		Оцениваемые компетенции	Темы (разделы) дисциплины
2	Тестирование	ОПК-5	4. Трансляция 5. Рекомбинация ДНК 6. Репарация. 7. Генетическая инженерия
	Зачет	ПК-1, ПК-8	

6.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Форма	Критерии оценивания					
контроля	Отлично	Хорошо	Удовл.	Неуд.	_ Этап	
Семестр 7						
Текущий конт	роль					
Тестирование	86% правильных ответов и более.	От 71% до 85 % правильных ответов.	От 56% до 70% правильных ответов.	55% правильных ответов и менее.	1 2	
	Зачтено	L	Не зачтено	·		
Зачет	учебно-программног необходимом для да предстоящей работь справился с выполн	ы по специальности,	способен продолжить приступить по оконча профессиональной де	новного материала, допустил бки в выполнении граммой заданий и не обучение или нии университета к		

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Семестр 7

Текущий контроль

1. Тестирование

Темы 1, 2, 3

- 1. Энергия для образования связи между аминокислотами в процессе трансляции берется
- 1. за счет гидролиза АТФ
- 2. за счет гидролиза ГТФ
- 3. за счет отщепления аминокислоты от тРНК
- 4. за счет NADH
- 2.Выберите правильную последовательность для инициации трансляции
- 1. Малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, IF2 связывается с fMet tRNA и малой субъединицей, факторы инициации диссоциируют
- 2. Малая субъединица соединяется с областью ШАйна-Дельгарно, IF2 связывается с fMet tRNA и малой субъединицей, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 3. IF2 связывается с fMet tRNA и малой субъединицей, малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 4. IF2 связывается с fMet tRNA и полной рибосомой, рибосома соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 3. Точность синтеза белка определяется
- 1. Проверкой точности геометрии двух любых нуклеотидов в триплете
- 2. Проверкой точности геометрии всех трех нуклеотидов в триплете
- 3. Проверкой точности геометрии первых двух нуклеотидов в триплете
- 4. Заменой неправильно встроенных аминокислот в белке
- 5. Удалении неправильно встроенных аминокислот до образования пептидной связи
- 6. Удалении неправильно встроенных аминокислот после образования пептидной связи
- 4.Синтез белка происходит за счет

- 1. Присоединения карбоксильной группы растущей цепи (в А сайте) к аминогруппе новой аминокислоты, находящейся в Р сайте
- 2. Присоединения карбоксильной группы растущей цепи (в Р сайте) к аминогруппе новой аминокислоты, находящейся в А сайте
- 3. Присоединения аминогруппы растущей цепи (в А сайте) к карбоксильной новой аминокислоты, находящейся в Р сайте
- 4. Присоединения аминогруппы растущей цепи (в Р сайте) к карбоксильной группе новой аминокислоты, находящейся в А сайте
- 5. Транслокация рибосомы происходит за счет
- 1. Энергии гидролиза АТФ,
- 2. Энергии гидролиза ГТФ,
- 3. Фактора элонгации EF-G
- 4. Фактора элонгации EF-Tu
- 5. Поворота транспортной РНК
- 6. Благодаря отщеплению свободной tRNA
- 6. При гомологичной рекомбинации белок RecA
- 1. Расплетает двойную спираль ДНК
- 2. Защищает однонитевую ДНК от деградации
- 3. Обеспечивает проникновение однонитевой ДНК в двойную спираль ДНК
- 4. Разрешает структуры Холлидея
- 7. Рекомбинация дает возможность
- 1. проводить репарацию ДНК
- 2. образовываться новым генам
- 3. защищаться от чужеродной ДНК
- 4. интегрироваться вирусам в геном
- 8.Сайт-специфическая рекомбинация
- 1. происходит между гомологичными последовательностями
- 2. ? наблюдается между последовательностями с ограниченной длиной гомологичных участков
- 3. ? участок ДНК перемещается из одного сайта к другому с участием коротких повторов
- 9. Назовите правильную последовательность событий при эксцизионной репарации:
- 1. Белки UvrAB связываются с повреждённым сайтом, UvrC и UvrB вносят разрезы выше и ниже сайта метилирования, UvrD удаляет поврежденную цепь, ДНК полимераза I застраивает брешь и лигаза сшивает ники
- 2. Белки UvrAB связываются с повреждённым сайтом, UvrC вносит разрезы выше и ниже места повреждения, UvrD удаляет поврежденную цепь, ДНК полимераза I застраивает брешь и лигаза сшивает ники
- 3. Белки UvrAB связываются с повреждённым сайтом, UvrC и UvrB вносят разрезы выше и ниже места повреждения, UvrD удаляет поврежденную цепь, ДНК полимераза I застраивает брешь и лигаза сшивает ники
- 4. Белки UvrAB связываются с повреждённым сайтом, UvrC и UvrB вносят разрезы выше и ниже места повреждения, UvrD удаляет поврежденную цепь, ДНК полимераза III застраивает брешь и лигаза сшивает ники
- 10. Какой вид репарации восстанавливает ошибки в ДНК, возникающие НЕ в процессе репликации
- 1. Эксцизионная
- 2. Mismatch
- 3. Фотореактивация
- 4. Рекомбинационная
- 5. SOS-репарация
- 11.Плазмидные векторы как правило содержат
- 1. Точку Ori
- 2. Полилинкер
- 3. Гены для своей репликации
- 4. Сильные промоторы
- 5. Гены устойчивости к антибиотику
- 6. Гены РНК полимеразы
- 7. Ген бета галактозидазы
- 12.ПЦР (только одна реакция) позволяет
- 5. Идентифицировать организм
- 6. Наработать множественные копии заданного участка нуклеотидной последовательности
- 7. Секвенировать заданный участок нуклеотидной последовательности
- 8. Клонировать заданный участок нуклеотидной последовательности
- 13. При инициации трансляции fMet tRNA находится в
- 1. А сайте,
- 2. Р сайте

- 3. Е сайте
- 14. Точность синтеза белка определяется
- 1. Проверкой точности геометрии двух любых нуклеотидов в триплете
- 2. Проверкой точности геометрии всех трех нуклеотидов в триплете
- 3. Проверкой точности геометрии первых двух нуклеотидов в триплете
- 4. Заменой неправильно встроенных аминокислот в белке
- 5. Удалении неправильно встроенных аминокислот до образования пептидной связи
- 6. Удалении неправильно встроенных аминокислот после образования пептидной связи
- 15. Терминация трансляции происходит за счет
- 1. Нечитаемости стопкодонов
- 2. Стопкодоны остаются пустые и рибосома соскакивает
- 3. К стопкодонам присоединяются факторы терминации которые приводят к диссоциации рибосомы
- 4. К стопкодонам присоединяются факторы терминации которые приводят к присоединению воды вместо аминокислоты
- 16.Выберите правильную последовательность для инициации трансляции
- 1. Малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, IF2 связывается с fMet tRNA и малой субъединицей, факторы инициации диссоциируют
- 2. Малая субъединица соединяется с областью ШАйна-Дельгарно, IF2 связывается с fMet tRNA и малой субъединицей, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 3. IF2 связывается с fMet tRNA и малой субъединицей, малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 4. IF2 связывается с fMet tRNA и полной рибосомой, рибосома соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 17. Синтез белка происходит за счет
- 1. Присоединения карбоксильной группы растущей цепи (в А сайте) к аминогруппе новой аминокислоты, находящейся в Р сайте
- 2. Присоединения карбоксильной группы растущей цепи (в Р сайте) к аминогруппе новой аминокислоты, находящейся в А сайте
- 3. Присоединения аминогруппы растущей цепи (в А сайте) к карбоксильной новой аминокислоты, находящейся в Р сайте
- 4. Присоединения аминогруппы растущей цепи (в Р сайте) к карбоксильной группе новой аминокислоты, находящейся в А сайте
- 18. При гомологичной рекомбинации белок RuvC
- 1. Расплетает двойную спираль ДНК
- 2. Защищает однонитевую ДНК от деградации
- 3. Обеспечивает проникновение однонитевой ДНК в двойную спираль ДНК
- 4. Разрешает структуры Холлидея
- 19. Рекомбинация дает возможность
- 1. проводить репарацию ДНК
- 2. образовываться новым гена
- 3. защищаться от чужеродной ДНК
- 4. интегрироваться вирусам в геном
- 20.Гомологичная рекомбинация
- 1. происходит между гомологичными последовательностями
- 2. наблюдается между последовательностями с ограниченной длиной гомологичных участков
- 3. участок ДНК перемещается из одного сайта к другому с участием коротких повторов
- 21. Назовите правильную последовательность событий при эксцизионной репарации:
- 1. Белок MutS связывается с повреждённым сайтом, вместе с MutL и MutH образуют разрез на ДНК, UvrD удаляет поврежденную цепь и останавливается на сайте GATC, ДНК полимераза I застраивает брешь и лигаза сшивает ники
- 2. Белок MutS связывается с повреждённым сайтом, вместе с MutL двигается вдоль ДНК и формирует петлю, в сайте метилирования GATC связывается MutH и образуется ник, UvrD удаляет поврежденную цепь, ДНК полимераза I застраивает брешь и лигаза сшивает ники
- 3. Белок MutS связывается с повреждённым сайтом, вместе с MutL двигается вдоль ДНК и формирует петлю, в сайте метилирования GATC связывается MutH и образуется ник, UvrD удаляет поврежденную цепь, ДНК полимераза III застраивает брешь и лигаза сшивает ники
- 22. Какой вид репарации восстанавливает ошибки в ДНК, возникающие в процессе репликации
- 1. Эксцизионная
- 2. Mismatch
- 3. Фотореактивация
- 4. Рекомбинационная

- 5. SOS-репарация
- 23.Плазмидные векторы обязательно должны содержать
- 1. Точку Огі
- 2. Полилинкер
- 3. Гены для своей репликации
- 4. Сильные промоторы
- 5. Гены устойчивости к антибиотику
- 6. Гены РНК полимеразы
- 7. Ген бета галактозидазы
- 24.Рестриктазы это
- 1. ферменты, распознающие участки ДНКи метилирующие их
- 2. ферменты, узнающие определенный участок на ДНК и разрезающие ее
- 3. ферменты, разрезающие ДНК в любом месте
- 4. ферменты, распознающие вирусную ДНК

2. Тестирование

Темы 4, 5, 6, 7

Энергия для образования связи между аминокислотами в процессе трансляции берется

- 1. за счет гидролиза АТФ
- 2. за счет гидролиза ГТФ
- 3. за счет отшепления аминокислоты от тРНК
- 4. за счет NADH

Выберите правильную последовательность для инициации трансляции

- 1. Малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, IF2 связывается с fMet tRNA и малой субъединицей, факторы инициации диссоциируют
- 2. Малая субъединица соединяется с областью ШАйна-Дельгарно, IF2 связывается с fMet tRNA и малой субъединицей, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 3. IF2 связывается с fMet tRNA и малой субъединицей, малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 4. IF2 связывается с fMet tRNA и полной рибосомой, рибосома соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют

Точность синтеза белка определяется

- 1. Проверкой точности геометрии двух любых нуклеотидов в триплете
- 2. Проверкой точности геометрии всех трех нуклеотидов в триплете
- 3. Проверкой точности геометрии первых двух нуклеотидов в триплете
- 4. Заменой неправильно встроенных аминокислот в белке
- 5. Удалении неправильно встроенных аминокислот до образования пептидной связи
- 6. Удалении неправильно встроенных аминокислот после образования пептидной связи

Синтез белка происходит за счет

- 1. Присоединения карбоксильной группы растущей цепи (в А сайте) к аминогруппе новой аминокислоты, находящейся в Р сайте
- 2. Присоединения карбоксильной группы растущей цепи (в Р сайте) к аминогруппе новой аминокислоты, находящейся в А сайте
- 3. Присоединения аминогруппы растущей цепи (в А сайте) к карбоксильной новой аминокислоты, находящейся в Р сайте
- 4. Присоединения аминогруппы растущей цепи (в Р сайте) к карбоксильной группе новой аминокислоты, находящейся в А сайте

Транслокация рибосомы происходит за счет

- 1. Энергии гидролиза АТФ,
- 2. Энергии гидролиза ГТФ,
- 3. Фактора элонгации EF-G
- 4. Фактора элонгации EF-Tu
- 5. Поворота транспортной РНК
- 6. Благодаря отщеплению свободной tRNA

При гомологичной рекомбинации белок RecA

- 1. Расплетает двойную спираль ДНК
- 2. Защищает однонитевую ДНК от деградации
- 3. Обеспечивает проникновение однонитевой ДНК в двойную спираль ДНК
- 4. Разрешает структуры Холлидея

Рекомбинация дает возможность

1. - проводить репарацию ДНК

- 2. образовываться новым генам
- 3. защищаться от чужеродной ДНК
- 4. интегрироваться вирусам в геном

Сайт-специфическая рекомбинация

- 1. происходит между гомологичными последовательностями
- 2. ? наблюдается между последовательностями с ограниченной длиной гомологичных участков
- 3. ? участок ДНК перемещается из одного сайта к другому с участием коротких повторов

Плазмидные векторы как правило содержат

- 1. Точку Огі
- 2. Полилинкер
- 3. Гены для своей репликации
- 4. Сильные промоторы
- 5. Гены устойчивости к антибиотику
- 6. Гены РНК полимеразы
- 7. Ген бета галактозидазы

ПЦР (только одна реакция) позволяет

- 1. Идентифицировать организм
- 2. Наработать множественные копии заданного участка нуклеотидной последовательности
- 3. Секвенировать заданный участок нуклеотидной последовательности
- 4. Клонировать заданный участок нуклеотидной последовательности

При инициации трансляции fMet tRNA находится в

- 1. А сайте,
- 2. Р сайте
- 3. Е сайте

Точность синтеза белка определяется

- 1. Проверкой точности геометрии двух любых нуклеотидов в триплете
- 2. Проверкой точности геометрии всех трех нуклеотидов в триплете
- 3. Проверкой точности геометрии первых двух нуклеотидов в триплете
- 4. Заменой неправильно встроенных аминокислот в белке
- 5. Удалении неправильно встроенных аминокислот до образования пептидной связи
- 6. Удалении неправильно встроенных аминокислот после образования пептидной связи

Терминация трансляции происходит за счет

- 1. Нечитаемости стопкодонов
- 2. Стопкодоны остаются пустые и рибосома соскакивает
- 3. К стопкодонам присоединяются факторы терминации которые приводят к диссоциации рибосомы
- 4. К стопкодонам присоединяются факторы терминации которые приводят к присоединению воды вместо аминокислоты

Выберите правильную последовательность для инициации трансляции

- 1. Малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, IF2 связывается с fMet tRNA и малой субъединицей, факторы инициации диссоциируют
- 2. Малая субъединица соединяется с областью ШАйна-Дельгарно, IF2 связывается с fMet tRNA и малой субъединицей, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 3. IF2 связывается с fMet tRNA и малой субъединицей, малая субъединица соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют
- 4. IF2 связывается с fMet tRNA и полной рибосомой, рибосома соединяется с областью ШАйна-Дельгарно, присоединяется большая субъединица рибосомы, факторы инициации диссоциируют

Синтез белка происходит за счет

- 1. Присоединения карбоксильной группы растущей цепи (в А сайте) к аминогруппе новой аминокислоты, находящейся в Р сайте
- 2. Присоединения карбоксильной группы растущей цепи (в Р сайте) к аминогруппе новой аминокислоты, находящейся в А сайте
- 3. Присоединения аминогруппы растущей цепи (в А сайте) к карбоксильной новой аминокислоты, находящейся в Р сайте
- 4. Присоединения аминогруппы растущей цепи (в Р сайте) к карбоксильной группе новой аминокислоты, находящейся в А сайте

При гомологичной рекомбинации белок RuvC

- 1. Расплетает двойную спираль ДНК
- 2. Защищает однонитевую ДНК от деградации
- 3. Обеспечивает проникновение однонитевой ДНК в двойную спираль ДНК
- 4. Разрешает структуры Холлидея

Рекомбинация дает возможность

- 1. проводить репарацию ДНК
- 2. образовываться новым гена
- 3. защищаться от чужеродной ДНК
- 4. интегрироваться вирусам в геном

Гомологичная рекомбинация

- 1. происходит между гомологичными последовательностями
- 2. наблюдается между последовательностями с ограниченной длиной гомологичных участков
- 3. участок ДНК перемещается из одного сайта к другому с участием коротких повторов

Плазмидные векторы обязательно должны содержать

- 1. Точку Ori
- 2. Полилинкер
- 3. Гены для своей репликации
- 4. Сильные промоторы
- 5. Гены устойчивости к антибиотику
- 6. Гены РНК полимеразы
- 7. Ген бета галактозидазы

Рестриктазы это

- 1. ферменты, распознающие участки ДНКи метилирующие их
- 2. ферменты, узнающие определенный участок на ДНК и разрезающие ее
- 3. ферменты, разрезающие ДНК в любом месте
- 4. ферменты, распознающие вирусную ДНК

Зачет

Вопросы к зачету:

- 1. Центральная догма молекулярной биологии. Современное понимание вопроса.
- 2. Строение ДНК, РНК, белков. Особенности внутриклеточной упаковки ДНК у прокариот и эукариот
- 3. Гистоны: особенности белков, механизмы контроля связывания с ДНК
- 4. Молекулярные механизмы репликации ДНК. Точка Ori у разных организмов, множественная инициация репликации. Инициация репликации у эукариот.
- 5. Молекулярные механизмы репликации ДНК. Инициация репликации у прокариот.
- 6. Молекулярные механизмы репликации ДНК. Репликативная вилка, элонгация. Энергетические вопросы репликации
- 7. Молекулярные механизмы репликации ДНК. Основные правила репликации.
- 8. Теломеры и теломеразы. Назначение, строение. Лимит Хейфлика
- 9. Теломеры и теломеразы. Строение и механизм достраивания.
- 10. Строение гена прокариот. Опероны.
- 11. Молекулярные механизмы транскрипции ДНК у прокариот. Строение промотора, инициация транскрипции
- 12. Сигма факторы и факторы транскрипции у прокариот. Механизмы контроля активности
- 13. Молекулярные механизмы транскрипции ДНК. Элонгация.
- 14. Механизмы тонкого контроля активности генов у прокариот. Понятие индуцибельных и конститутивных генов. Позитивная и негативная регуляция.
- 15. Механизмы тонкого контроля активности генов у прокариот. Операторные сайты. Механизмы репрессии транскрипции
- 16. Механизмы тонкого контроля активности генов у прокариот. Операторные сайты. Механизмы активации транскрипции
- 17. Регуляция транскрипции лактозного оперона
- 18. Регуляция транскрипции арабинозного оперона
- 19. Регуляция транскрипции триптофанового оперона
- 20. Двухкомпонентные системы трансдукции сигнала
- 21. Строение гена эукариот. Экзоны и интроны.
- 22. Молекулярные механизмы транскрипции ДНК у эукариот. Строение промотора, инициация транскрипции
- 23. Механизмы тонкого контроля активности генов у эукариот.
- 24. Факторы транскрипции у эукариот. Механизмы контроля активности
- 25. Посттранскрипционная модификация мРНК. Биологическое значение сплайсинга.
- 26. Молекулярные механизмы транскрипции ДНК. Терминация.
- 27. Молекулярные механизмы транскрипции ДНК. Аттенуация, антитерминация.
- 28. Трансляция. Общие правила, особенности у про- и эукариот
- 29. Строение рибосом про- и эукариот
- 30. Инициация трансляции прокариот
- 31. Инициация трансляции эукариот

- 32. Инициация трансляции эукариот, модель замкнутой цепи
- 33. 5? сар-независимая инициация
- 34. Элонгация при трансляции. Механизмы точного синтеза, транспептидирования, транслокации
- 35. Особенности трансляции у вирусов
- 36. Модели транслокации белков через мембраны
- 37. Генетичсекий код. Особенности у про ? и эукариот, органелл. Механизмы точного присоединения аминокислот к тРНК.
- 38. Терминация трансляции. Фолдинг белка
- 39. Рекомбинация. Биологическая роль рекомбинации, виды рекомбинации.
- 40. Гомологичная рекомбинация. Модель Холлидея
- 41. Гомологичная рекомбинация. Работа белков RecABCD
- 42. Гомологичная рекомбинация. Молекулярные механизмы, роль белков RuvABC
- 43. Гомологичная рекомбинация у эукариот
- 44. Сайт-специфическая рекомбинация. Биологическая роль.
- 45. Сайт-специфическая рекомбинация. Пример фага лямбда, hin инвертазы у Сальмонеллы
- 46. Фаг лямбда: механизмы регуляции выбора лизогенного или литического пути
- 47. Транспозоны. Биологическая роль. Механизмы рекомбинации.
- 48. Мутации. Понятие, виды, причины.
- 49. Эксцизионная репарация
- 50. Мисмач репарация
- 51. Рекомбинационная репарация
- 52. Фотореактивация
- 53. SOS-репарация
- 54. Системы рестрикции и модификации у Е. coli. Биологическая роль.
- 55. Системы рестрикции и модификации второго типа, их практическое применение. ПДРФ анализ
- 56. Клонирование генов. Понятие, подходы, применение.
- 57. Плазмидные векторы для клонирования. Строение, структурные элементы.
- 58. Методы контроля экспрессии генов у бактерий. Практический смысл использования индуцибельных промоторов в генной инженерии.
- 59. Бактериальные экспрессионные системы. Векторы и штаммы для гиперпродукции белков. рЕТ-система, принцип действия.
- 60. Эукариотические экспрессионные системы.
- 61. Методы контроля экспрессии генов у эукариот.
- 62. Системы экспрессии на основе фагов и вирусов.
- 63. Методы выделения геномной ДНК. Принцип методов, выбор метода в зависимости от природы и размера нуклеиновых кислот, решаемой задачи.
- 64. Методы выделения плазмидной ДНК. Принцип методов, выбор метода в зависимости от природы и размера нуклеиновых кислот, решаемой задачи.
- 65. ПЦР, принцип метода, используемые ферменты. Факторы, влияющие на точность и процессивность реакции. Способы оптимизации реакции.
- 66. ПЦР в реальном времени, принцип метода, используемые ферменты. Факторы, влияющие на точность и процессивность реакции. Способы оптимизации реакции.
- 67. Генетическая трансформация бактерий. Селективные факторы для отбора.
- 68. Метод электрофоретического разделения ДНК. Принцип метода, условия проведения в зависимости от природы и размера нуклеиновых кислот
- 69. Метод электрофоретического разделения белков. Принцип метода, условия проведения в зависимости от природы и размера белка. Электрофорез в нативных и денатурирующих условиях
- 70. Методы окрашивания ДНК и белков в гелях после электрофореза
- 71. Современные методы секвенирования, принципы NGS
- 72. Генетические маркеры в филогенетике.
- 73. Гибридизация белков и нуклеиновых кислот: блоттинг, FISH.

6.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В КФУ действует балльно-рейтинговая система оценки знаний обучающихся. Суммарно по дисциплине (модулю) можно получить максимум 100 баллов за семестр, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов.

Для зачёта:

56 баллов и более - "зачтено".

55 баллов и менее - "не зачтено".

Для экзамена:

86 баллов и более - "отлично".

71-85 баллов - "хорошо".

56-70 баллов - "удовлетворительно".

55 баллов и менее - "неудовлетворительно".

Форма контроля	Процедура оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	Этап	Количество баллов
Семестр 7			V
Текущий конт	роль		
Тестирование	Тестирование проходит в письменной форме или с использованием компьютерных средств. Обучающийся получает определённое количество тестовых заданий. На выполнение выделяется фиксированное время в зависимости от количества заданий. Оценка выставляется в зависимости от процента правильно выполненных заданий.	1 2	25 25
Зачет	Зачёт нацелен на комплексную проверку освоения дисциплины. Обучающийся получает вопрос (вопросы) либо задание (задания) и время на подготовку. Зачёт проводится в устной, письменной или компьютерной форме. Оценивается владение материалом, его системное освоение, способность применять нужные знания, навыки и умения при анализе проблемных ситуаций и решении практических заданий.		50

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1 Основная литература:

Введение в генетику: Учебное пособие/Пухальский В. А. - М.: НИЦ ИНФРА-М, 2015. - 224 с. ISBN 978-5-16-009026-9 Режим доступа: http://znanium.com/catalog/product/510420

Нахаева, В. И. Практический курс общей генетики [Электронный ресурс]: учеб. пособие для студентов биологических специальностей педагогических высших учебных заведений / В. И. Нахаева. - 2-е изд., стереотип. - М.: ФЛИНТА, 2011. - 210 с.: ил. - ISBN 978-5-9765-1204-7. Режим доступа: http://znanium.com/catalog/product/406327

Применение молекулярных методов исследования в генетике: Учебное пособие/Нефедова Л. Н. - М.: НИЦ ИНФРА-М, 2016. - 104 с. ISBN 978-5-16-009872-2 Режим доступа: http://znanium.com/catalog/product/460545

Основы генетики : учебник / В.В. Иванищев. ? М. : РИОР : ИНФРА-М, 2017. ? 207 с. - Режим доступа: http://znanium.com/catalog/product/557529

7.2. Дополнительная литература:

Тихонов, Г. П. Основы биохимии [Электронный ресурс] : Учебное пособие / Г. П. Тихонов, Т. А. Юдина. - М.: МГАВТ-Альтаир, 2014. - 184 с. Режим доступа: http://znanium.com/catalog/product/503169

Основы биохимии: Учебное пособие / Т.Л. Ауэрман, Т.Г. Генералова, Г.М. Суслянок. - М.: НИЦ ИНФРА-М, 2014. - 400 с. ISBN 978-5-16-005295-3. Режим доступа: http://znanium.com/catalog/product/460475

Плакунов, В. К. Основы энзимологии [Электронный ресурс] / В. К. Плакунов. - М.: Логос, 2002. - 128 с.: ил. - ISBN 5-94010-027-9. Режим доступа: http://znanium.com/catalog/product/469372

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

http://www.ncbi.nih.gov/book/genomic - http://www.ncbi.nih.gov/book/genomic

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации
лекции	Лекционный материал и указанные литературные источники по соответствующей теме необходимо изучить до посещения соответствующего лекционного занятия, так как лекция в аудитории предполагает раскрытие актуальных и проблемных вопросов рассматриваемой темы, а не содержания лекционного материала. Таким образом, для понимания того, что будет сказано на лекции, необходимо получить базовые знания по теме, которые содержаться в лекционном материале.
практические занятия	Практические занятия предназначены для уточнения, более глубокой проработки и закрепления знаний, полученных на лекциях. При подготовке к практическим занятиям желательно внимательно прочитать конспект лекции. При чтении в конспекте выделяются (цветом, подчеркиванием и т.п.) основные смысловые блоки, ключевые формулы. Желательно постоянно пользоваться однотипной системой выделения? это облегчает последующую работу с текстом и запоминание информации. Для более полного усвоения материала, охвата всех важных аспектов необходимо ознакомится с дополнительной литературой. Помимо книг, указанных после каждой темы, желательно обращаться к журналам и Интернет-ресурсам. При работе с дополнительной литературой желательно делать краткие выписки, дополняющие основной конспект. Таким образом, на подготовку одного вопроса семинара требуется не менее одного часа, а при работе с дополнительной литературой
лабораторные работы	Для успешного выполнения работ обучающиеся должны строго следовать инструкциям преподавателя, и выполнять операции строго по выданным протоколам. Целью лабораторных работ является освоение стандартных методов выделения ДНК из различных клеток, электрофоретического разделения ДНК, полимеразной цепной реакции. Предлагаются наиболее распространенные и общепринятые методики, не требующие дорогостоящих или редких реактивов и материалов, либо коммерческих наборов реагентов. Каждый метод содержит теоретическое описание и краткую характеристику, назначение метода, наиболее важные аспекты его практического использования, целевое назначение необходимых реактивов и оборудования, подробное последовательное описание стадий лабораторных операций. В конце занятия необходимо оформить лабораторную работу на бумажном носителе с описанием цели работы, методики и полученных результатов
самостоя- тельная работа	Самостоятельная работа является обязательной составляющей деятельности обучающегося по изучению дисциплины. Самостоятельная работа направлена на более глубокое изучение отдельных тем дисциплины, систематизацию полученных знаний. В программе дисциплины так же указана трудоемкость самостоятельной работы по каждой из тем. Это ? время, необходимое для выполнения всех заданий по теме аспирантом с хорошей успеваемостью и средним темпом работы. Планирование рабочего времени каждым обучающимся должно осуществляться самостоятельно. Однако можно выделить некоторые общие рекомендации. Начинать самостоятельные занятия следует с начала семестра и проводить их регулярно. Не следует откладывать работу из-за ?нерабочего настроения?. Не следует пытаться выполнить всю самостоятельную работу за один день, накануне представления ее результатов. В большинстве случаев это просто физически невозможно. Гораздо более эффективным является распределение работы на несколько дней: это способствует более качественному выполнению заданий и лучшему усвоению материала. Важно полнее учесть обстоятельства своей работы, уяснить, что является главным на данном этапе, какую последовательность работы выбрать, чтобы выполнить ее лучше и с наименьшими затратами времени и энергии. Для плодотворной работы немаловажное значение имеет обстановка, организация рабочего места. Место работы, по возможности, должно быть постоянным. Работа на привычном месте более плодотворна.
тестирование	Тестирование является средством промежуточного контроля оценки знаний. Подготовка к нему заключается в повторении пройденного материала и повторном решении заданий, которые рассматривались на занятиях, а также в выполнении заданий для самостоятельной работы. Рекомендуется перед ней повторить лекционный материал и теорию практических занятий
зачет	Подготовка к зачету является заключительным этапом изучения дисциплины и является средством текущего контроля. В процессе подготовки к зачету выявляются вопросы, по которым нет уверенности в ответе либо ответ студенту не ясен. Данные вопросы можно уточнить у преподавателя на консультации, которая проводится перед зачетом

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Освоение дисциплины "Молекулярная генетика" предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows Professional 7 Russian

Пакет офисного программного обеспечения Microsoft Office 2010 Professional Plus Russian

Браузер Mozilla Firefox

Браузер Google Chrome

Adobe Reader XI

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен обучающимся. Многопрофильный образовательный ресурс "Консультант студента" является электронной библиотечной системой (ЭБС), предоставляющей доступ через сеть Интернет к учебной литературе и дополнительным материалам, приобретенным на основании прямых договоров с правообладателями. Полностью соответствует требованиям федеральных государственных образовательных стандартов высшего образования к комплектованию библиотек, в том числе электронных, в части формирования фондов основной и дополнительной литературы.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Освоение дисциплины "Молекулярная генетика" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора. автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Специализированная лаборатория оснащена оборудованием, необходимым для проведения лабораторных работ, практических занятий и самостоятельной работы по отдельным дисциплинам, а также практик и научно-исследовательской работы обучающихся. Лаборатория рассчитана на одновременную работу обучающихся академической группы либо подгруппы. Занятия проводятся под руководством сотрудника университета, контролирующего выполнение видов учебной работы и соблюдение правил техники безопасности. Качественный и количественный состав оборудования и расходных материалов определяется спецификой образовательных программ.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий:
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 06.03.01 "Биология" и профилю подготовки не предусмотрено .

