МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"

Институт фундаментальной медицины и биологии

УТВЕРЖДАЮ

Программа дисциплины

Генная инженерия

Направление подготовки: <u>06.03.01 - Биология</u> Профиль подготовки: <u>не предусмотрено</u> Квалификация выпускника: <u>бакалавр</u>

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2016

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО
- 2. Место дисциплины (модуля) в структуре ОПОП ВО
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
- 4.2. Содержание дисциплины (модуля)
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 7. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины (модуля) к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья
- 13. Приложение №1. Фонд оценочных средств
- 14. Приложение №2. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 15. Приложение №3. Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Программу дисциплины разработал(a)(и) профессор, д.н. (профессор) Шарипова М.Р. (кафедра микробиологии, Центр биологии и педагогического образования), marsharipova@gmail.com

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Обучающийся, освоивший дисциплину (модуль), должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции		
ОПК-11	способностью применять современные представления об основах биотехнологических и биомедицинских производств, генной инженерии, нанобиотехнологии, молекулярного моделирования		
ОПК-7	способностью применять базовые представления об основных закономерностях и современных достижениях генетики и селекции, о геномике, протеомике		
ПК-3	готовностью применять на производстве базовые общепрофессиональные знания теории и методов современной биологии		

Обучающийся, освоивший дисциплину (модуль):

Должен знать:

Основные способы клонирования ДНК из различных источников

Основные типы молекулярных векторов

Принципы и критерии клонирования в организмах разного уровня сложности;

Основы геноинформационного анализа.

Должен уметь:

Применять теоретические знания о молекулярном клонировании для создания новых искусственных генетических систем

Ориентироваться в современных направлениях молекулярного клонирования для решения практических задач разного уровня сложности;

Работать с учебной и научной литературой сети интернет;

Работать с основными базами данных генов и белков, использовать основные прораммные продукты для их анализа.

Должен владеть:

Фундаментальными знаниями о структурной организации генов прокариот и эукариот и механизмах их экспрессии;

Стратегией получения рекомбинантных молекул, путями их введения в организмы-реципиенты

Знаниями о методологии генной инженерии прокариот, животных, растений и человека;

Навыками сравнительного анализа генов и оценки их фрагментов

Должен демонстрировать способность и готовность:

на основе полученных знаний решать научные и практические задачи методологией рекомбинантных ДНК в области генетической инженерии бактерий, дрожжей, животных и человека.

2. Место дисциплины (модуля) в структуре ОПОП ВО

Данная дисциплина (модуль) включена в раздел "Б1.В.ОД.7 Дисциплины (модули)" основной профессиональной образовательной программы 06.03.01 "Биология (не предусмотрено)" и относится к обязательным дисциплинам. Осваивается на 3 курсе в 6 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) на 108 часа(ов).

Контактная работа - 52 часа(ов), в том числе лекции - 22 часа(ов), практические занятия - 30 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 38 часа(ов).

Контроль (зачёт / экзамен) - 18 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 6 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

N	Разделы дисциплины / модуля	Семестр	(в часах)			Самостоятельная работа
			Лекции	Практические занятия	Лабораторные работы	•
1.	Тема 1. Стратегия молекулярного клонирования	6	4	4	0	6
2.	Тема 2. Типы векторных молекул и их конструирование	6	4	6	0	6
3.	Тема 3. Методы генной инженерии	6	4	6	0	6
4.	Тема 4. Генная инженерия бактерий и дрожжей	6	4	6	0	8
5.	Тема 5. Генная инженерия растений и животных	6	4	6	0	8
6.	Тема 6. Генная инженерия человека	6	2	2	0	4
	Итого		22	30	0	38

4.2 Содержание дисциплины (модуля)

Тема 1. Стратегия молекулярного клонирования

Генная инженерия как наука, цель, задачи. Основные теоретические положения и предпосылки для развития генной инженерии. Плазмиды как векторные молекулы, классификация, характеристики, применение. Структура плазмид. Рестриктазы и другие ферменты, используемые в генной инженерии. Контроль исследований в области рекомбинантных ДНК. Основной принцип получения рекомбинантных ДНК. Пути трансформации рекомбинантной ДНК.

Тема 2. Типы векторных молекул и их конструирование

Типы векторых молекул: амплификаторы, фьюжен-векторы, векторы экспрессии, векторы секреции, бинарные векторы. Конструирование векторных молекул. Векторы на основе бактериальных плазмид. Векторы на основе фага лямбда, однонитевых фагов. Космиды, фагмиды, фазмиды. РЕТ- векторы, интегративные векторы. Искусственные хромосомы. Клонирование структурных генов эукариот.

Тема 3. Методы генной инженерии

Методы геннной инженерии. Система полимеразной цепной реакции и ее применение., ПЦР в реальном времени, ПЦР с обратной транскриптазой. Методы секвенирования ДНК. Пирофосфатное секвенирование, нанотехнологии в основе секвенирования нового поколения, секвенирование в реальном времени, торрент-секвенирование. Программы поиска открытой рамки считывания. Блоттинги для идентификации ДНК, РНК и белков. Техника прогулки и прыжков по хромосоме.

Тема 4. Генная инженерия бактерий и дрожжей

Генная инженерия бактерий. ДНК-диагностика. Получение коммерческих продуктов - рестриктаз, аскорбиновой кислоты, аминокислот, антибиотиков. Биодеградация токсических соединений. Микробные инсектициды. Генная инженерия дрожжей. Дрожжевые плазмиды. Дрожжевые векторы и их назначение: интегративные, репликативные, эписомные, центромерные. Искусственные хромосомы дрожжей.

Тема 5. Генная инженерия растений и животных

Генная инженерия растений. Векторная трансформация с помощью агробактерий. Организация и строение Ті-плазмиды, слияние протопластов, перенос генов физическими методами. Применение репортерных генов, экспрессия чужеродных генов в хлоропластах. Генная инженерия животных. Рекомбинантные бакулловирусы. Векторы на основе вирусов и мобильных элементов. Использование ретровирусов, микроинъекций ДНК, стволовых клеток, искусственных хромосом для получения трансгенных животных. Клонирование с помощью переноса ядра. Применение трансгенных животных.

Тема 6. Генная инженерия человека

Генотерапия, основные методы генотерапии: ex vivo и in vivo. Вирусные системы доставки терапевтических генов. Невирусные системы доставки генов. Лекарственные средства на основе олигонуклеотидов. Программа Геном человека и ее практическая значимость. Наследственные заболевания и способы из преодоления. Перспективы генотерапевтических исследований. Биоинженерная технология по созданию полноценных жизнеспособных биологических органов.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301)

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Устав федерального государственного автономного образовательного учреждения "Казанский (Приволжский) федеральный университет"

Правила внутреннего распорядка федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"

Локальные нормативные акты Казанского (Приволжского) федерального университета

M.Р.Шарипова Курс лекций по генетической инженерии. учебное пособие - https://kpfu.ru//staff_files/F935076354/Kurs.lekcij.po.geneticheskoj.inzhenerii.pdf

6. Фонд оценочных средств по дисциплине (модулю)

Фонд оценочных средств по дисциплине (модулю) включает оценочные материалы, направленные на проверку освоения компетенций, в том числе знаний, умений и навыков. Фонд оценочных средств включает оценочные средства текущего контроля и оценочные средства промежуточной аттестации.

В фонде оценочных средств содержится следующая информация:

- соответствие компетенций планируемым результатам обучения по дисциплине (модулю);
- критерии оценивания сформированности компетенций;
- механизм формирования оценки по дисциплине (модулю);
- описание порядка применения и процедуры оценивания для каждого оценочного средства;
- критерии оценивания для каждого оценочного средства;
- содержание оценочных средств, включая требования, предъявляемые к действиям обучающихся, демонстрируемым результатам, задания различных типов.

Фонд оценочных средств по дисциплине находится в Приложении 1 к программе дисциплины (модулю).

7. Перечень литературы, необходимой для освоения дисциплины (модуля)

Освоение дисциплины (модуля) предполагает изучение основной и дополнительной учебной литературы. Литература может быть доступна обучающимся в одном из двух вариантов (либо в обоих из них):

- в электронном виде через электронные библиотечные системы на основании заключенных КФУ договоров с правообладателями;
- в печатном виде в Научной библиотеке им. Н.И. Лобачевского. Обучающиеся получают учебную литературу на абонементе по читательским билетам в соответствии с правилами пользования Научной библиотекой.

Электронные издания доступны дистанционно из любой точки при введении обучающимся своего логина и пароля от личного кабинета в системе "Электронный университет". При использовании печатных изданий библиотечный фонд должен быть укомплектован ими из расчета не менее 0,5 экземпляра (для обучающихся по ФГОС 3++ - не менее 0,25 экземпляра) каждого из изданий основной литературы и не менее 0,25 экземпляра дополнительной литературы на каждого обучающегося из числа лиц, одновременно осваивающих данную дисциплину.

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля), находится в Приложении 2 к рабочей программе дисциплины. Он подлежит обновлению при изменении условий договоров КФУ с правообладателями электронных изданий и при изменении комплектования фондов Научной библиотеки КФУ.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

BLAST - http://www.ncbi.nih.gov/blast

Genetic Analysis / Eds. Griffits A.J.F., Gelbart W.M., Miller J.H., Lewontin R.C. - http://www.ncbi.nih.gov/book/molecular genetic

Genomics / Brown E. 2-th ed. - http://www.ncbi.nih.gov/book/genomic

Modern Genetic Analysis / Eds. Griffits A.J.F., Gelbart W.M., Miller J.H., Lewontin R.C - -

http://www.ncbi.nih.gov/book/molecular genetic

Molecular Cell Biology. /Eds.Lodish H., Berk A., ZipurskyS.L., Matsudaria P., Baltimor D., Darnell D. - 4-th ed. - http://www.ncbi.nih.gov/book/molecular genetic

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации				
лекции	рекомендуется обязательное посещение лекций, конспектирование излагаемого лектором материала по предмету, самостоятельная работа над материалом, изложенным в лекциях с применением рекомендованной научной литературы по предмету и самостоятельным поиском научных обзорных работ по освоенному материалу. На лекциях особое внимание уделяется обязательному конспектированию определений и терминов.				
практические занятия	рекомендуется обязательное посещение практических занятий по предмету, систематический поиск и освоение научной литературы по предмету с целью подготовки к практическим занятиям в том числе на основе лекционного материала, освоение биоинформатических методов для использования баз данных в ходе практических занятий, вход и навыки работа с базой данных NCBI				
самостоя- тельная работа	рекомендуется систематическая самостоятельная работа с рекомендованной преподавателем литературой по материалам лекционных и практических занятий, самостоятельный поиск научной информации в базах данных научных электронных библиотек, рекомендуется самостоятельная проработка и усвоение изложенных на лекциях терминах, формулах и определениях по предмету				
экзамен	для сдачи экзамена рекомендуются систематические и регулярные занятия по предмету на основе лекционного курса преподавателя, освоение законспектированного на лекциях и практических занятиях материала, работа с рекомендованной преподавателем литературой, рекомендуется использование методических разработок по курсу				

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем, представлен в Приложении 3 к рабочей программе дисциплины (модуля).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Материально-техническое обеспечение образовательного процесса по дисциплине (модулю) включает в себя следующие компоненты:

Помещения для самостоятельной работы обучающихся, укомплектованные специализированной мебелью (столы и стулья) и оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду КФУ.

Учебные аудитории для контактной работы с преподавателем, укомплектованные специализированной мебелью (столы и стулья).

Компьютер и принтер для распечатки раздаточных материалов.

Мультимедийная аудитория.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально:
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий:
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 06.03.01 "Биология" и профилю подготовки "не предусмотрено".

Приложение 2 к рабочей программе дисциплины (модуля) Б1.В.ОД.7 Генная инженерия

Перечень литературы, необходимой для освоения дисциплины (модуля)

Направление подготовки: <u>06.03.01 - Биология</u> Профиль подготовки: <u>не предусмотрено</u> Квалификация выпускника: <u>бакалавр</u>

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2016

Основная литература:

М.Р. Шарипова Курс лекций по генетической инженерии. Учебное пособие. Казань 2015. 114 с.

ЭОР: М.Р.Шарипова 'Курс лекций по генетической инженерии'-учебно-методические ресурсы - Режим доступа: https://dspace.kpfu.ru/xmlui/handle/net/150086 (2019-03-14T07:02:49Z), 120 с.

Микробная биотехнология [Текст] / Под ред. О. Н. Ильинской; М-во образования Рос. Федерации - Казань: Казан.гос. ун-т. 2007. - 424 с.

Сазанов, А.А. Генетика [Электронный ресурс] / А.А. Сазанов. - СПб.: ЛГУ им. А.С. Пушкина, 2011. -264 с. - Режим доступа: http://znanium.com/catalog/product/445036

Брюханов, А.Л. Молекулярная микробиология / А.Л. Брюханов, К.В. Рыбак, А.И. Нетрусов; под ред. проф. А. И. Нетрусова. - Москва: Изд-во Московского университета, 2012. - 467 с.

Фаллер, Дж. М. Молекулярная биология клетки / Джеральд М. Фаллер, Деннис Шилдс; пер. с англ. под общ. ред. акад. И. Б. Збарского. - Москва: Бином-Пресс, 2012. - 256 с.

Граник, В.Г. Генетика: химический и медико-биологический аспекты [Текст]/ В. Г.Граник. - Москва: Вузовская книга, 2011. - 437 с.

Дополнительная литература:

М.Р. Шарипова Курс лекций по генетической инженерии Учебное пособие. Казань 2015. 114 с.

Димитриев, А.Д. Биохимия: Учебное пособие [Электронный ресурс] / А.Д. Димитриев, Е.Д. Амбросьева. - М.: Издательско-торговая корпорация 'Дашков и К-', 2012. - 168 с. - Режим доступа: http://znanium.com/bookread.php?book=415230

Пухальский В. А. Введение в генетику: Учебное пособие [Электронный ресурс] / В.А. Пухальский. - М.: НИЦ ИНФРА-М, 2014. - 224 с. - Режим доступа: http://znanium.com/bookread.php?book=419161

Биохимия: учебник [Электронный ресурс] / Под ред. Е.С. Северина. 5-е изд., испр. и доп. 2012. - 768 с. - Режим доступа: http://www.studmedlib.ru/ru/book/ISBN9785970423950.html

Приложение 3 к рабочей программе дисциплины (модуля) Б1.В.ОД.7 Генная инженерия

Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Направление подготовки: <u>06.03.01 - Биология</u> Профиль подготовки: <u>не предусмотрено</u> Квалификация выпускника: <u>бакалавр</u>

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2016

Освоение дисциплины (модуля) предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows 7 Профессиональная или Windows XP (Volume License)

Пакет офисного программного обеспечения Microsoft Office 365 или Microsoft Office Professional plus 2010

Браузер Mozilla Firefox Браузер Google Chrome

Adobe Reader XI или Adobe Acrobat Reader DC

Kaspersky Endpoint Security для Windows

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен обучающимся. Многопрофильный образовательный ресурс "Консультант студента" является электронной библиотечной системой (ЭБС), предоставляющей доступ через сеть Интернет к учебной литературе и дополнительным материалам, приобретенным на основании прямых договоров с правообладателями. Полностью соответствует требованиям федеральных государственных образовательных стандартов высшего образования к комплектованию библиотек, в том числе электронных, в части формирования фондов основной и дополнительной литературы.

