МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

УТВЕРЖДАЮ

Программа дисциплины

Геометрия Лобачевского и специальная теория относительности М1.В.2

Направление подготовки: 010100.68 - Математика
Профиль подготовки: Уравнения в частных производных
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):
COCOB E.H.
Рецензент(ы):
СОГЛАСОВАНО:
Заведующий(ая) кафедрой:
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института математики и механики им. Н.И. Лобачевского :
Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2013

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, д.н. (доцент) Сосов Е.Н. Кафедра геометрии отделение математики , Evgenii.Sosov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины "Геометрия Лобачевского и специальная теория отно-сительности" являются:

- 1) фундаментальная подготовка в геометрии Лобачевского;
- 2) знакомство со специальной теорией относительности.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " М1.В.2 Общенаучный" основной образовательной программы 010100.68 Математика и относится к вариативной части. Осваивается на 1 курсе, 1 семестр.

Дисциплина "Геометрия Лобачевского и специальная теория относительности" входит в цикл профессиональных дисциплин в базовой части.

Для ее успешного изучения необходимы знания и умения, приобретенные в результате освоения предшествующих дисциплин:

математический анализ, дифференциальная геометрия и топология.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

В результате освоения дисциплины студент:

1. должен знать:

основные понятия, и свойства математических объектов в этой области, формулировки утверждений, методы их доказательства, возможные сферы их приложений; роль геометрии Лобачевского в современной математике и физике.

2. должен уметь:

решать задачи в геометрии Лобачевского.

3. должен владеть:

математическим аппаратом в геометрии Лобачевского.

основные понятия, и свойства математических объектов в этой области, формулировки утверждений, методы их доказательства, возможные сферы их приложений.

математическим аппаратом в геометрии Лобачевского.

решать задачи в геометрии Лобачевского.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 72 часа(ов). Форма промежуточного контроля дисциплины зачет в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной р их трудоемк (в часах Практические занятия	аботы, сость	Текущие формы контроля
1.	Тема 1. Геометрия пространства Лобачевского. Определение пространства Лобачевского. Метрика пространства Лобачевского в модели Бельтрами-Клейна.	1	1-2	2	2	0	домашнее задание
2.	Тема 2. Движения пространства Лобачевского. Элементарная геометрия в модели Бельтрами-Клейна плоскости Лобачевского. Параллельные и расходящиеся прямые. Величина угла. Угол параллельности. Дефект и избыток треугольника. Теорема Пифагора. Формула Лобачевского. Теоремы синусов, косинусов и двойственная теорема косинусов. Длины средней линии и медианы, точка пересечения медиан в треугольнике.	1	3-4	2	4	0	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах)	аботы, ость)	Текущие формы контроля
	МОДУЛЯ		_	Лекции	Практические занятия	Лабораторные работы	_
3.	Тема 3. Модели Пуанкаре пространства Лобачевского на сфере псевдоевклидова пространства индекса 1 и в открытом шаре евклидова пространства. Модель Пуанкаре пространства Лобачевского в открытом полупространстве евклидова пространства	1	6-9	2	4	0	контрольная работа
4.	Тема 4. Римановы метрики в рассмотренных моделях пространства Лобачевского. Координаты Лобачевского, Бельтрами, Вейерштрасса и полярные координаты в плоскости Лобачевского. Длины дуги и окружности. Элемент площади в координатах Бельтрами. Площадь круга. Гиперплоскость в пространстве Лобачевского. Расстояние от точки до гиперплоскости.	1	10-11	2	2	0	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр		Пекним	Виды и ча аудиторной ра их трудоемк (в часах Практические	аботы, ость) Лабораторные	Текущие формы контроля
5.	Тема 5. Ортогональная проекция точки на гиперплоскость. Величина угла между ориентированными гиперплокостями. Критерий ортогональности гиперплоскостей. Окружность, орицикл и эквиди-станта. Эллиптический, гиперболический и параболический пучки прямых.	1	12-14	2	занятия 2	работы	домашнее задание
6.	Тема 6. Приложения геометрии Лобачевского. Пространство Минковского. Преобразования Лоренца. Геометрия пространства скоростей частиц в специальной теории относительности является геометрией Лобачевского. Аберрация света звезд и угол параллельности. 4-векторы импульса и ускорения релятивистской частицы.	1	15-16	1	2	0	контрольная работа
7.	Тема 7. Законы сохранения энергии и импульса в релятивистской механике и геометрия Лобачевского. Упругие рассеяния релятивистских частиц. Формула Комптона. Эффект Доплера. Распад нейтрального пиона и геометрия Лобачевского.	1	17-18	1	2	0	домашнее задание
	Тема . Итоговая форма контроля	1		0	0	0	зачет

N	Раздел Дисциплины/	Семестр се	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	
	Итого			12	18	0	

4.2 Содержание дисциплины

Тема 1. Геометрия пространства Лобачевского. Определение пространства Лобачевского. Метрика пространства Лобачевского в модели Бельтрами-Клейна.

лекционное занятие (2 часа(ов)):

практическое занятие (2 часа(ов)):

Тема 2. Движения пространства Лобачевского. Элементарная геометрия в модели Бельтрами-Клейна плоскости Лобачевского. Параллельные и расходящиеся прямые. Величина угла. Угол параллельности. Дефект и избыток треугольника. Теорема Пифагора. Формула Лобачевского. Теоремы синусов, косинусов и двойственная теорема косинусов. Длины средней линии и медианы, точка пересечения медиан в треугольнике.

лекционное занятие (2 часа(ов)):

практическое занятие (4 часа(ов)):

Тема 3. Модели Пуанкаре пространства Лобачевского на сфере псевдоевклидова пространства индекса 1 и в открытом шаре евклидова пространства. Модель Пуанкаре пространства Лобачевского в открытом полупространстве евклидова пространства. лекционное занятие (2 часа(ов)):

практическое занятие (4 часа(ов)):

Тема 4. Римановы метрики в рассмотренных моделях пространства Лобачевского. Координаты Лобачевского, Бельтрами, Вейерштрасса и полярные координаты в плоскости Лобачевского. Длины дуги и окружности. Элемент площади в координатах Бельтрами. Площадь круга. Гиперплоскость в пространстве Лобачевского. Расстояние от точки до гиперплоскости.

лекционное занятие (2 часа(ов)):

практическое занятие (2 часа(ов)):

Тема 5. Ортогональная проекция точки на гиперплоскость. Величина угла между ориентированными гиперплокостями. Критерий ортогональности гиперплоскостей. Окружность, орицикл и эквиди-станта. Эллиптический, гиперболический и параболический пучки прямых.

лекционное занятие (2 часа(ов)):

практическое занятие (2 часа(ов)):

Тема 6. Приложения геометрии Лобачевского. Пространство Минковского. Преобразования Лоренца. Геометрия пространства скоростей частиц в специальной теории относительности является геометрией Лобачевского. Аберрация света звезд и угол параллельности. 4-векторы импульса и ускорения релятивистской частицы.

лекционное занятие (1 часа(ов)):

практическое занятие (2 часа(ов)):

Тема 7. Законы сохранения энергии и импульса в релятивистской механике и геометрия Лобачевского. Упругие рассеяния релятивистских частиц. Формула Комптона. Эффект Доплера. Распад нейтрального пиона и геометрия Лобачевского.

лекционное занятие (1 часа(ов)):

практическое занятие (2 часа(ов)):

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1	Тема 1. Геометрия пространства Лобачевского. Определение пространства Лобачевского. Метрика пространства Лобачевского в модели Бельтрами-Клейна.	1	1-2			
2	Тема 2. Движения пространства Лобачевского. Элементарная геометрия в модели Бельтрами-Клейна плоскости Лобачевского. Параллельные и расходящиеся прямые. Величина угла. Угол параллельности. Дефект и избыток треугольника. Теорема Пифагора. Формула Лобачевского. Теоремы синусов, косинусов и двойственная теорема косинусов. Длины средней линии и медианы, точка пересечения медиан в треугольнике.	1	3-4			

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
3.	Тема 3. Модели Пуанкаре пространства Лобачевского на сфере псевдоевклидова пространства индекса 1 и в открытом шаре евклидова пространства. Модель Пуанкаре пространства Лобачевского в открытом полупространстве евклидова пространства	1	6-9			
4.	Тема 4. Римановы метрики в рассмотренных моделях пространства Лобачевского. Координаты Лобачевского, Бельтрами, Вейерштрасса и полярные координаты в плоскости Лобачевского. Длины дуги и окружности. Элемент площади в координатах Бельтрами. Площадь круга. Гиперплоскость в пространстве Лобачевского. Расстояние от точки до гиперплоскости.	1	10-11			
5.	Тема 5. Ортогональная проекция точки на гиперплоскость. Величина угла между ориентированными гиперплокостями. Критерий ортогональности гиперплоскостей. Окружность, орицикл и эквиди-станта. Эллиптический, гиперболический и параболический пучки прямых.	1	12-14			

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
6	Тема 6. Приложения геометрии Лобачевского. Пространство Минковского. Преобразования Лоренца. Геометрия пространства скоростей частиц в специальной теории относительности является геометрией Лобачевского. Аберрация света звезд и угол параллельности. 4-векторы импульса и ускорения релятивистской частицы.	1	15-16			
7.	Тема 7. Законы сохранения энергии и импульса в релятивистской механике и геометрия Лобачевского. Упругие рассеяния релятивистских частиц. Формула Комптона. Эффект Доплера. Распад нейтрального пиона и геометрия Лобачевского.	1	17-18			
	Итого				0	

5. Образовательные технологии, включая интерактивные формы обучения

Освоение дисциплины "Геометрия Лобачевского и специальная теория относительности" предполагает использование как традиционных (лекции, практические занятия с использованием методических материалов), так и интерактивных форм проведения занятий с использованием программ Maxima и Mathematica.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Геометрия пространства Лобачевского. Определение пространства Лобачевского. Метрика пространства Лобачевского в модели Бельтрами-Клейна.

Тема 2. Движения пространства Лобачевского. Элементарная геометрия в модели Бельтрами-Клейна плоскости Лобачевского. Параллельные и расходящиеся прямые. Величина угла. Угол параллельности. Дефект и избыток треугольника. Теорема Пифагора. Формула Лобачевского. Теоремы синусов, косинусов и двойственная теорема косинусов. Длины средней линии и медианы, точка пересечения медиан в треугольнике.

Тема 3. Модели Пуанкаре пространства Лобачевского на сфере псевдоевклидова пространства индекса 1 и в открытом шаре евклидова пространства. Модель Пуанкаре пространства Лобачевского в открытом полупространстве евклидова пространства.

Тема 4. Римановы метрики в рассмотренных моделях пространства Лобачевского. Координаты Лобачевского, Бельтрами, Вейерштрасса и полярные координаты в плоскости Лобачевского. Длины дуги и окружности. Элемент площади в координатах Бельтрами. Площадь круга. Гиперплоскость в пространстве Лобачевского. Расстояние от точки до гиперплоскости.

Тема 5. Ортогональная проекция точки на гиперплоскость. Величина угла между ориентированными гиперплокостями. Критерий ортогональности гиперплоскостей. Окружность, орицикл и эквиди-станта. Эллиптический, гиперболический и параболический пучки прямых.

Тема 6. Приложения геометрии Лобачевского. Пространство Минковского. Преобразования Лоренца. Геометрия пространства скоростей частиц в специальной теории относительности является геометрией Лобачевского. Аберрация света звезд и угол параллельности. 4-векторы импульса и ускорения релятивистской частицы.

Тема 7. Законы сохранения энергии и импульса в релятивистской механике и геометрия Лобачевского. Упругие рассеяния релятивистских частиц. Формула Комптона. Эффект Доплера. Распад нейтрального пиона и геометрия Лобачевского.

Тема . Итоговая форма контроля

Примерные вопросы к зачету:

В течение семестра студенты решают задачи, указанные преподавателем, к каждому семинару. В конце проводится зачет.

Оценка выставляется по результатам работы в течении семестра и ответа на зачете.

Контрольная работа.

(ПРИМЕР ВАРИАНТА)

- 1. Докажите, что в модели Пуанкаре в шаре
- |x|=r th (d(0,x)/2k).
- 2. Постройте с помощью циркуля и линейки в модели Бельтрами-Клейна плоскости Лобачевского:
- а) для данного полюса поляру; b) для данной поляры полюс; c) перпендикуляр из данной точки и данную прямую;
- d) середину данного отрезка; e) биссектрису данного угла.
- (Всего 25 вариантов)

7.1. Основная литература:

- 1. Широков П.А. Краткий очерк основ геометрии Лобачевского.
- М.: Наука. 1983. 80 с.
- 2. Прасолов В.В. Геометрия Лобачевского.
- M. MЦНМО.- 2004. 89 с.
- 3. Розенфельд Б.А. Многомерные пространства.
- М.: Наука. 1966. 648 с.
- 4. Розенфельд Б.А. Неевклидовы пространства.
- М. Наука. 1969. 548 с.

- 5. Дубровский В.Н., Смородинский Я.А., Сурков Е.Л. Релятивистский мир. М.: Наука. Главная редакция физ.-мат. лит. Библиотечка <<Квант>>. Вып. 34. 1984. 176 с.
- 6. Ефимов Н.В. Высшая геометрия. М.: Наука. Главная редакция физ.-мат. лит. 1978. 576 с.
- 7. Артин Э. Геометрическая алгебра. М.: Наука. Главная редакция физ.-мат. лит. 1969. 284 с.
- 8. Прасолов В.В., Тихомиров В.М. Геометрия. М. МЦНМО.- 2007. 328 с.

7.2. Дополнительная литература:

- 1. Егоров И.П. Геометрия. М.: Просвещение. 1997. 256 с.
- 2. Васильев А.В. Николай Иванович Лобачевский. М.: Наука. -1992. 222 с.
- 3. Каган В.Ф. Основания геометрии. Ч. I Л.: Гос. изд-во технико-технической лит. 1949. 492 с.
- 4. Алексеевский Д.В., Винберг Э.Б., Солодовников А.С. Геометрия пространств по-стоянной кривизны. <<Современные проблемы математики. Фундаметальные направле-ния. Т. 29. (Итоги науки и техники ВИНИТИ АН СССР)>>. М. 1988. С. 5-146.

7.3. Интернет-ресурсы:

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Геометрия Лобачевского и специальная теория относительности" предполагает использование следующего материально-технического обеспечения:

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010100.68 "Математика" и магистерской программе Уравнения в частных производных .

Программа дисциплины "Геометрия Лобачевского и специальная теория относительности"; 010100.68 Математика; доцент, д.н. (доцент) Сосов Е.Н.

Автор(ы):	
Сосов Е.Н	
" "	201 г.
Рецензент(ы):	
""	_ 201 г.