МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

УТВЕРЖДАЮ

Программа дисциплины

Аппроксимативные методы решения сингулярных интегральных уравнений Б1.В.ДВ.9

11					
Направление подготовки: <u>01.03.01 - Математика</u>					
Профиль подготовки: <u>Общий профиль</u>					
Квалификация выпускника: бакалавр					
Форма обучения: <u>очное</u>					
Язык обучения: русский					
Автор(ы):					
Ожегова А.В.					
Рецензент(ы):					
Агачев Ю.Р.					
СОГЛАСОВАНО:					
Заведующий(ая) кафедрой: Авхадиев Ф. Г.					
Протокол заседания кафедры No от ""201г					
Учебно-методическая комиссия Института математики и механики им. Н.И. Лобачевского:					
Протокол заседания УМК No от ""201г					
Регистрационный No					
Казань					
2018					

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Ожегова А.В. Кафедра теории функций и приближений отделение математики , Alla.Ozhegova@kpfu.ru

1. Цели освоения дисциплины

Целью данной дисциплины является изучение элементов теории сингулярных уравнений и основных аппроксимативных методов их решения. с функционально-теоретическим обоснованием

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.9 Дисциплины (модули)" основной образовательной программы 01.03.01 Математика и относится к дисциплинам по выбору. Осваивается на 4 курсе, 8 семестр.

Данная дисциплина входит в вариативную часть основной образовательной программы и относится к специальным дисциплина. для ее освоения требуются знания и умения всех

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОПК-3 (профессиональные компетенции)	способностью к самостоятельной научно-исследовательской работе
ОПК-4 (профессиональные компетенции)	способностью находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем
ПК-10 (профессиональные компетенции)	способностью к планированию и осуществлению педагогической деятельности с учетом специфики предметной области в образовательных организациях
ПК-3 (профессиональные компетенции)	способностью строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата
ПК-7 (профессиональные компетенции)	способностью использовать методы математического и алгоритмического моделирования при анализе управленческих задач в научно-технической сфере, в экономике, бизнесе и гуманитарных областях знаний

В результате освоения дисциплины студент:

4. должен демонстрировать способность и готовность:

строить вычислительные схемы известных аппроксимативных методов для решения прикладных задач, математическими моделями которых служат различные классы смнгулярных интегральных уравнений с учетом теории таких уравнений, проводить теоретико-функциональное обоснование этих схем на основе общей теории приближенных методов анализа и их численную реализацию.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 8 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	, Лабораторные работы	•
1.	Тема 1. Теория сингулярных интегральных уравнений	8		4	4	0	
2.	Тема 2. Элементы общей теории приближенных методов анализа и конструктивной теории функций	8		4	4	0	
3.	Тема 3. Аппроксимативные методы решения сингулярных интегральных уравнений первого рода с ядром Коши	8		4	6	0	
4.	Тема 4. Аппроксимативные методы решения сингулярных интегральных уравнений с ядром Гильберта	8		4	2	0	
5.	Тема 5. Аппроксимативные методы решения слабо сингулярных интегральных уравнений первого рода	8		6	6	0	
	Тема . Итоговая форма контроля	8		0	0	0	Экзамен
	Итого			22	22	0	

4.2 Содержание дисциплины

Тема 1. Теория сингулярных интегральных уравнений *лекционное занятие (4 часа(ов)):*

Интегральные уравнения. Основные понятия. Исторические сведения. Теоремы Фредгольма. Теоремы Нетера. Несобственный интеграл. Сингулярный интеграл, понимаемый в смысле главного значения по Коши. Сингулярный интеграл с ядром Коши на замкнутой кривой. Формулы Сохоцкого-Племеля. Формула перестановки Пуанкаре-Бертрана. Формула обращения сингулярного интеграла. Связь ядер Коши и Гильберта. Классы функций. Свойства сингулярных интегралов в зависимости от структурных свойств плотностей. Теорема Привалова. Теорема Рисса. Пример Лузина.

практическое занятие (4 часа(ов)):

Сингулярный интеграл с ядром Коши на отрезке вещественной оси. Формула обращения. Сингулярный интеграл с ядром Гильберта. Формула обращения. Доказательство теоремы Привалова. Свойства сингулярных интегралов.

Тема 2. Элементы общей теории приближенных методов анализа и конструктивной теории функций

лекционное занятие (4 часа(ов)):

Корректность постановки задачи решения операторного уравнения на паре функциональных пространств. Точное и аппроксимирующее уравнения. Теоретико-функциональное обоснование приближенных методов: доказательство существования и единственности решения аппроксимирующего уравнения, установление эффективных оценок погрешности приближенного решения в зависимости от структурных свойств исходных данных, доказательство сходимости приближенных решений к точному и установление скорости их сходимости, исследование устойчивости приближенных методов. Основные теоремы из общей теории приближенных методов.

практическое занятие (4 часа(ов)):

Приближение функций отрезками рядов Фурье. Приближение функций интерполяционными полиномами. Оценки операторов Фурье и Лагранжа в различных функциональных пространствах

Тема 3. Аппроксимативные методы решения сингулярных интегральных уравнений первого рода с ядром Коши

лекционное занятие (4 часа(ов)):

Корректность постановки задачи решения сингулярного интегрального уравнения первого рода с ядром Коши на отрезке. Индекс уравнения. Выбор пространств искомых элементов и правых частей в зависимости от индекса уравнения. Метод коллокации. Метод ортогональных многочленов. Метод механических квадратур. Метод наименьших квадратов. Вычислительные схемы и теоретическое обоснование. Сходимость приближенных решений к точному в среднем и равномерно. Общий проекционный метод. Общий прямой метод.

практическое занятие (6 часа(ов)):

Построение вычислительных схем методов коллокации и моментов и их обоснование.

Тема 4. Аппроксимативные методы решения сингулярных интегральных уравнений с ядром Гильберта

лекционное занятие (4 часа(ов)):

Постановка задачи решения сингулярного интегрального уравнения с ядром Гильберта первого рода. Метод коллокации. Метод Галеркина. Метод механических квадратур. Общий прямой метод.

практическое занятие (2 часа(ов)):

Построение вычислительных схем. получение оценок погрешностей.

Тема 5. Аппроксимативные методы решения слабо сингулярных интегральных уравнений первого рода

лекционное занятие (6 часа(ов)):

Уравнения с логарифмической особенностью в главной части интегрального оператора. Периодический и непериодический случаи. Корректность и некорректность постановки задачи на разных парах функциональных пространств. Периодический и непериодический случай. Общий прямой и проекционный методы. Метод Галеркина. Метод коллокации. Метод механических квадратур. Метод дискретных вихрей. Итерационный метод. Теоретико-функциональное обоснование аппроксимативных методов.

практическое занятие (6 часа(ов)):

Построение вычислительных схем проекционных методов, их теоретическое обоснование . Получение среднеквадратичных и равноменых оценок погрешности приближенного решения

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Теория сингулярных интегральных уравнений	8		освоение теоретического материала	2	устный опрос
2.	Тема 2. Элементы общей теории приближенных методов анализа и конструктивной теории функций	8		освоение теоретического материала	2	устный опрос
3.	Тема 3. Аппроксимативные методы решения сингулярных интегральных уравнений первого рода с ядром Коши	8		Домашняя контрольная работа		Проверка контрольной работы
4.	Тема 4. Аппроксимативные методы решения сингулярных интегральных уравнений с ядром Гильберта	8		освоение теоретического материала	2	устный опрос
5.	Тема 5. Аппроксимативные методы решения слабо сингулярных интегральных уравнений первого рода	8		численная реализация вычислительных схем	10	отчет
	Итого				28	

5. Образовательные технологии, включая интерактивные формы обучения

Традиционные образовательные технологии: лекции, практические занятия с применением активных и интерактивных форм и самостоятельная работа под контролем преподавателя

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Теория сингулярных интегральных уравнений

устный опрос, примерные вопросы:

Несобственный интеграл. Сингулярный интеграл, понимаемый в смысле главного значения по Коши. Сингулярный интеграл с ядром Коши на замкнутой кривой. Формула перестановки Пуанкаре-Бертрана. Формула обращения сингулярного интеграла. Связь ядер Коши и Гильберта. Классы функций. Свойства сингулярных интегралов в зависимости от структурных свойств плотностей. Теорема Привалова. Теорема Рисса. Пример Лузина.

Тема 2. Элементы общей теории приближенных методов анализа и конструктивной теории функций

устный опрос, примерные вопросы:

Корректность постановки задачи решения операторного уравнения на паре функциональных пространств. Точное и аппроксимирующее уравнения. Теоретико-функциональное обоснование приближенных методов. Основные теоремы из общей теории приближенных методов. Свойства операторов Фурье и Лагранжа.

Тема 3. Аппроксимативные методы решения сингулярных интегральных уравнений первого рода с ядром Коши

Проверка контрольной работы, примерные вопросы:

Обоснование вычислительных схем метода коллокации или моментов для сиу на классе функций ограниченных на одном конце и неограниченных на другом.

Тема 4. Аппроксимативные методы решения сингулярных интегральных уравнений с ядром Гильберта

устный опрос, примерные вопросы:

Сингулярный интеграл с ядром Гильберта и его свойства.

Тема 5. Аппроксимативные методы решения слабо сингулярных интегральных уравнений первого рода

отчет, примерные вопросы:

решить интегральное уравнение первого рода с логарифмической особенностью в характеристической части, у которого известно точное решение, одним из известных аппроксимирующих методов и провести сравнительный анализ

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Контроль качества подготовки осуществляется путем проверки теоретических знаний и практических навыков путем

- 1) проверки домашних заданий и контрольных работ;
- 2) экзамена.

Вопросы к экзамену

7.1. Основная литература:

- 1. Габдулхаев Б.Г. Прямые и проекционные методы решения слабосингулярных интегральных уравнений 1-го рода. Учебное пособие. -Казань: Казанский государственный университет им.В.И.Ульянова-Ленина, 2006.-137с.
- 2. Габдулхаев Б.Г. Теория приближенных методов решения операторных уравнений. Учебное пособие. -Казань: Казанский государственный университет им.В.И.Ульянова-Ленина, 2006.-112с.

- 3. Петровский, И.Г. Лекции по теории интегральных уравнений. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2009. 136 с. Режим доступа: http://e.lanbook.com/book/59553
- 4.Колмогоров, А.Н. Элементы теории функций и функционального анализа. [Электронный ресурс] / А.Н. Колмогоров, С.В. Фомин. Электрон. дан. М.: Физматлит, 2009. 572 с. Режим доступа: http://e.lanbook.com/book/2206 Загл. с экрана.

7.2. Дополнительная литература:

- 1.Гахов Ф.Д. Краевые задачи.-М.:Наука, 1977.-640с.
- 2.Мусхелишвили Н.И. Сингулярные интегральные уравнения.-М.:Наука, 1968.-512с.
- 3.Лифанов И.К.Метод сингулярных уравнений и численный эксперимент.-М.: ТОО 'Янус', 1995.-520с.

7.3. Интернет-ресурсы:

Scopus - scopus.com

Единое образовательное окно - http://window.edu.ru/

Методы вычислительной математики -

http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=255

Общероссийский математический портал - http://www.mathnet.ru/

Численные методы в задачах и упражнениях -

http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=4399

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Аппроксимативные методы решения сингулярных интегральных уравнений" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Для освоения дисциплины необходимы классы персональных компьютеров с набором базового программного обеспечения.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.01 "Математика" и профилю подготовки Общий профиль .

Программа дисциплины "Аппроксимативные методы решения сингулярных интегральных уравнений"; 01.03.01 Математика; доцент, к.н. (доцент) Ожегова А.В.

Автор(ы):	
Ожегова А.В	
" "	_ 201 г.
Рецензент(ы): Агачев Ю.Р.	
""	_ 201 г.