МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

подписано электронно-цифровой подписью

Программа дисциплины

<u>Дополнительные главы дискретной математики</u> Б1.В.ДВ.9

Направление подготовки: 01.03.01 - Математика
Профиль подготовки: Общий профиль
Квалификация выпускника: бакалавр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):
Альпин Ю.А.
Рецензент(ы):
Фролов А.Н.

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Арсланов М. М. Протокол заседания кафедры No от "	
Учебно-методическая комиссия Института ма Протокол заседания УМК No от "" _	атематики и механики им. Н.И. Лобачевского 201г
Регистрационный No 817226018	
Каз	ань

2018

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННО АНАЛИТИЧЕСКАЯ СИСТЕМА КНО

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Альпин Ю.А. Кафедра алгебры и математической логики отделение математики , Yuri.Alpin@kpfu.ru

1. Цели освоения дисциплины

Главной целью освоения дисциплины (модуля) "Дополнительные главы дискретной математики" является получение углубленных знаний по некоторым разделам дискретной математики, как правило, не входящим в одноименный общий курс. Предлагаемый курс ориентирован преимущественно на задачи, имеющие практические приложения, что позволяет сформировать у студентов представление о дискретной математике как способе изучения широкого круга объектов и процессов, характеризующихся отсутствием свойств непрерывности.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.9 Дисциплины (модули)" основной образовательной программы 01.03.01 Математика и относится к дисциплинам по выбору. Осваивается на 4 курсе, 8 семестр.

Дисциплина (модуль) "Дополнительные главы дискретной математики" входит в цикл дисциплин по выбору. Для ее успешного изучения необходимы знания и умения в объеме школьной программы по математике, некоторые понятия и факты, входящие в общие курсы дискретной математики и линейной алгебры.

Место дисциплины в структуре ООП бакалавриата: Б3.ДВ.4.

Дисциплина изучается на 4 курсе, 8 семестр.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-10 (общекультурные компетенции)	умением находить, анализировать и контекстно обрабатывать научно-техническую информацию
ОК-7 (общекультурные компетенции)	исследовательскими навыками
ОК-8 (общекультурные компетенции)	способностью приобретать новые знания, используя современные образовательные и информационные технологии
ПК-17 (профессиональные компетенции)	умением извлекать полезную научно-техническую информацию из электронных библиотек, реферативных журналов, сети Интернет
ПК-21 (профессиональные компетенции)	владением методами математического и алгоритмического моделирования при анализе теоретических проблем и задач
ПК-22 (профессиональные компетенции)	владением проблемно-задачной формой представления математических знаний

В результате освоения дисциплины студент:

1. должен знать:

основные понятия из рассматриваемых разделов дискретной математики, определения и свойства математических объектов, используемых в этих областях, формулировки утверждений, методы их доказательства, возможные сферы их приложений.

2. должен уметь:

решать задачи теоретического и прикладного характера из входящих в данный курс разделов дискретной математики, доказывать утверждения, строить модели объектов и понятий.

3. должен владеть:

математическим аппаратом дискретной математики, методами доказательства утверждений в этой области, навыками алгоритмизации основных задач.

4. должен демонстрировать способность и готовность:

оперировать понятиями дискретной математики и решать стандартные задачи

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 8 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
			-	Лекции	Практические занятия	, Лабораторные работы	
1.	Тема 1. Пути в графах: критический путь в графе без контуров, нахождение пути наименьшего веса.	8	1	2	2	0	Письменное домашнее задание
2.	Тема 2. Теория расписаний: задачи об оптимальном расписании для одного и для двух станков, задача коммивояжера.	8	2-3	3	3	0	Письменное домашнее задание
3.	Тема 3. Транспортная задача и ее применения.	8	4-5	3	3	0	Письменное домашнее задание

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля		Journal Par	Лекции	Практические занятия	Лабораторные работы	•
4.	Тема 4. Приложения теории потоков в сетях: задача о спросе и предложении, допустимые циркуляции.	8	6	2	2	0	Письменное домашнее задание
5.	Тема 5. Метод динамического программирования: задача о распределении ресурсов, задача о загрузке транспорта.	8	7	2	2	0	Контрольная работа
6.	Тема 6. Графы с весами в полугруппах и теория структурного баланса.	8	8-9	3	З	0	Письменное домашнее задание
7.	Тема 7. Ориентируемость и уязвимость. Оптимальное планирование транспортных потоков.	8	10	1	1	0	Письменное домашнее задание
8.	Тема 8. Графы пересечений. Графы интервалов.	8	11-12	3	3	0	Письменное домашнее задание
9.	Тема 9. Устойчивость импульсных процессов.	8	13-14	3	3	0	Контрольная работа
	Тема . Итоговая форма контроля	8		0	0	0	Экзамен
	Итого			22	22	0	

4.2 Содержание дисциплины

Тема 1. Пути в графах: критический путь в графе без контуров, нахождение пути наименьшего веса.

лекционное занятие (2 часа(ов)):

Излагается содержание и дается теоретическое обоснование алгоритмов решения задач о нахождении 1) пути наибольшей длины в ориентированном графе без контуров, 2) (s,t)-пути наименьшей длины (веса) в ориентированном графе без петель.

практическое занятие (2 часа(ов)):

Решение задач о критических путях в графах.

Тема 2. Теория расписаний: задачи об оптимальном расписании для одного и для двух станков, задача коммивояжера.

лекционное занятие (3 часа(ов)):

Рассматриваются задачи о составлении оптимального расписания работы одного и двух станков, а также задача коммивояжера. Излагается содержание и дается теоретическое обоснование алгоритма Джонсона, а также метода ветвей и границ.

практическое занятие (3 часа(ов)):

Решение задач о составлении оптимальных расписаний и задачи коммивояжера.

Тема 3. Транспортная задача и ее применения.

лекционное занятие (3 часа(ов)):

Рассматривается транспортная задача, излагается алгоритм ее решения, дается обоснование работы алгоритма. В качестве применений транспортной задачи рассматриваются задача об оптимальном назначении и задача о поставщике.

практическое занятие (3 часа(ов)):

Решение транспортных задач.

Тема 4. Приложения теории потоков в сетях: задача о спросе и предложении, допустимые циркуляции.

лекционное занятие (2 часа(ов)):

Рассматриваются задача о спросе и предложении, а также задача о допустимой циркуляции в сети. Излагается содержание и дается теоретическое обоснование алгоритмов их решения.

практическое занятие (2 часа(ов)):

Решение задач о спросе и предложении и задач о допустимой циркуляции в сети.

Тема 5. Метод динамического программирования: задача о распределении ресурсов, задача о загрузке транспорта.

лекционное занятие (2 часа(ов)):

Рассматриваются две задачи, иллюстрирующие применение метода динамического программирования: задача о распределении ресурсов и задача о загрузке транспорта.

практическое занятие (2 часа(ов)):

Решение задач с помощью метода динамического программирования.

Тема 6. Графы с весами в полугруппах и теория структурного баланса.

лекционное занятие (3 часа(ов)):

Рассматриваются знаковые графы и излагается теорема Харари о сбалансированных знаковых графах, а также теоремы о сбалансированных ориентированных графах с весами в произвольных полугруппах.

практическое занятие (3 часа(ов)):

Решение задач о сбалансированных графах с весами в полугруппах.

Тема 7. Ориентируемость и уязвимость. Оптимальное планирование транспортных потоков.

лекционное занятие (1 часа(ов)):

Излагается теорема Роббинса о существовании сильно связной ориентации связного графа, приводится алгоритм нахождения ориентации и дается его обоснование. Рассматриваются вопросы о степени дуговой уязвимости графа и существовании транзитивной ориентации с приложениями к планированию транспортных потоков.

практическое занятие (1 часа(ов)):

Решение задач об ориентируемости и дуговой уязвимости графов.

Тема 8. Графы пересечений. Графы интервалов.

лекционное занятие (3 часа(ов)):

Рассматриваются графы пересечений и графы интервалов. Излагаются теоремы Гилмора-Хоффмана и Фалкерсона-Гросса о графах интервалов.

практическое занятие (3 часа(ов)):

Решение задач о графах пересечений и графах интервалов.

Тема 9. Устойчивость импульсных процессов.

лекционное занятие (3 часа(ов)):

Рассматриваются импульсные процессы в графах с весами. Даются необходимые и достаточные условия импульсной и абсолютной устойчивости импульсных процессов.

практическое занятие (3 часа(ов)):

Решение задач об устойчивости импульсных процессов.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Пути в графах: критический путь в графе без контуров, нахождение пути наименьшего веса.	8	1	подготовка домашнего задания	2	домашнее задание
	Тема 2. Теория расписаний: задачи об оптимальном расписании для одного и для двух станков, задача коммивояжера.	8	2-3	подготовка домашнего задания	4	домашнее задание
3.	Тема 3. Транспортная задача и ее применения.	8	4-5	подготовка домашнего задания	4	домашнее задание
4.	Тема 4. Приложения теории потоков в сетях: задача о спросе и предложении, допустимые циркуляции.	8	6	подготовка домашнего задания	2	домашнее задание
5.	Тема 5. Метод динамического программирования: задача о распределении ресурсов, задача о загрузке транспорта.	8	7	подготовка к контрольной работе	2	контрольная работа
О.	Тема 6. Графы с весами в полугруппах и теория структурного баланса.	8	8-9	подготовка домашнего задания	4	домашнее задание
	Тема 7. Ориентируемость и уязвимость. Оптимальное планирование транспортных потоков.	8	10	подготовка домашнего задания	2	домашнее задание
8.	Тема 8. Графы пересечений. Графы интервалов.	8	11-12	подготовка домашнего задания	4	домашнее задание

	N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
Ç	9.	Тема 9. Устойчивость импульсных процессов.	8	13-14	подготовка к контрольной работе	1 4 1	контрольная работа
ſ		Итого				28	

5. Образовательные технологии, включая интерактивные формы обучения

лекции, практические занятия (семинары), контрольные работы.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Пути в графах: критический путь в графе без контуров, нахождение пути наименьшего веса.

домашнее задание, примерные вопросы:

Найти (u,v)-путь наименьшего веса.

Тема 2. Теория расписаний: задачи об оптимальном расписании для одного и для двух станков, задача коммивояжера.

домашнее задание, примерные вопросы:

Составить оптимальное расписание работы двух станков.

Тема 3. Транспортная задача и ее применения.

домашнее задание, примерные вопросы:

Решить конкретную транспортную задачу.

Тема 4. Приложения теории потоков в сетях: задача о спросе и предложении, допустимые циркуляции.

домашнее задание, примерные вопросы:

Найти допустимую циркуляцию в сети.

Тема 5. Метод динамического программирования: задача о распределении ресурсов, задача о загрузке транспорта.

контрольная работа, примерные вопросы:

Определить оптимальное распределение ресурсов.

Тема 6. Графы с весами в полугруппах и теория структурного баланса.

домашнее задание, примерные вопросы:

Проверить сбалансированность графа.

Тема 7. Ориентируемость и уязвимость. Оптимальное планирование транспортных потоков.

домашнее задание, примерные вопросы:

Найти сильно связную ориентацию связного графа.

Тема 8. Графы пересечений. Графы интервалов.

домашнее задание, примерные вопросы:

Проверить, является ли заданный граф графом интервалов.

Тема 9. Устойчивость импульсных процессов.

контрольная работа, примерные вопросы:

Проверить устойчивость импульсного процесса.

Итоговая форма контроля

экзамен (в 8 семестре)

Примерные вопросы к экзамену:

- 1. Пути в графах: критический путь в графе без контуров, нахождение пути наименьшего веса.
- 2.Задача об оптимальном расписании для одного станка. и для двух станков, задача коммивояжера.
- 3. Задача об оптимальном расписании для двух станков, задача коммивояжера.
- 4. Задача коммивояжера.
- 5. Транспортная задача и ее применения.
- 6. Задача о спросе и предложении, допустимые циркуляции.
- 7. Метод динамического программирования: задача о распределении ресурсов, задача о загрузке транспорта.
- 8. Графы с весами в полугруппах и теория структурного баланса.
- 9. Ориентируемость и уязвимость. Оптимальное планирование транспортных потоков.
- 10. Графы пересечений. Графы интервалов.
- 11. Устойчивость импульсных процессов.

7.1. Основная литература:

- 1. Альпин, Ю.А. Дискретная математика: графы и автоматы: учеб. пособие / Ю.А. Альпин, С.Н. Ильин. Казан. гос. ун-т. Казань: Казан. гос. ун-т, 2007. 77, [1] с.
- 2. Альпин, Ю.А. Дискретная математика: графы и автоматы: учеб. пособие [Электронный ресурс] / Ю.А. Альпин, С.Н. Ильин. Казан. гос. ун-т. Казань: Казан. гос. ун-т, 2007. 77, [1] с. URL: http://dspace.kpfu.ru/xmlui/bitstream/handle/net/21648/0-761515.pdf
- 3. Асанов, М.О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М.О. Асанов, В.А. Баранский, В.В. Расин. Издание 2-е, исправленное и дополненное. Санкт-Петербург [и др.]: Лань, 2010. 362 с.
- 4. Асанов, М.О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие [Электронный ресурс] / М.О. Асанов, В.А. Баранский, В.В. Расин. Издание 2-е, исправленное и дополненное. Санкт-Петербург [и др.]: Лань, 2010. 362 с. URL: https://e.lanbook.com/reader/book/536/#1

7.2. Дополнительная литература:

- 1. Харари, Ф. Теория графов / Ф. Харари. под ред. Г.П. Гаврилова. пер. с англ. и предисл. В.П. Козырева. Изд. 4-е. Москва: ЛИБРОКОМ, 2009. 300 с.
- 2. Заботин, И.Я. Алгоритмы решения оптимизационных задач на графах: учеб. пособие / И.Я. Заботин, В.Р. Фазылов, О.Н. Шульгина. Казан. гос. ун-т. Казань: Казан.гос. ун-т, 2006. 66 с.
- 3. Астафьева, Л.К. Исследование операций: учебное пособие: для студентов экономического факультета / Л.К. Астафьева. Казан. гос.ун-т, Экон. фак. Казань: Изд-во Казан.гос. ун-та, 2008. 179 с.
- 4. Горлач, Б.А. Исследование операций: учебное пособие [Электронный ресурс] / Б.А. Горлач. 1-е изд. Санкт-Петербург [и др.]: Лань, 2013. 448 с. URL: https://e.lanbook.com/reader/book/4865/#1

7.3. Интернет-ресурсы:

Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы, матроиды, алгоритмы. - https://e.lanbook.com/reader/book/536/#1

Горлач Б.А. Исследование операций. - https://e.lanbook.com/reader/book/4865/#1

Кузнецов А.В., Сакович В.А., Холод Н.И. Высшая математика. Математическое программирование. - https://e.lanbook.com/reader/book/4550/#1

Кузнецов А.В., Сакович В.А., Холод Н.И. и др. Сборник задач и упражнений по высшей математике. Математическое программирование. - https://e.lanbook.com/reader/book/539/#1 Ржевский С.В. Исследование операций: учебное пособие - https://e.lanbook.com/reader/book/32821/#1

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Дополнительные главы дискретной математики" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB.audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Аудитории для лекций и практических занятий. Рекомендованная для освоения курса литература.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.01 "Математика" и профилю подготовки Общий профиль .

Автор(ы): Альпин Ю.А.	
"	_ 201 г.
Рецензент(ы): Фролов А.Н.	
"	_201 г.