МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

УТВЕРЖДАЮ

Программа дисциплины

Дискретная математика и математическая логика Б1.Б.12

Направление подготовки: 01.03.01 - Математика
Профиль подготовки: <u>Общий профиль</u>
Квалификация выпускника: <u>бакалавр</u>
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Альпин Ю.А., Калимуллин И.Ш.
Рецензент(ы):
Киндер М.И.
<u>СОГЛАСОВАНО:</u> Заведующий(ая) кафедрой: Арсланов М. М.
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института математики и механики им. Н.И. Лобачевского : Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2018

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Альпин Ю.А. Кафедра алгебры и математической логики отделение математики , Yuri.Alpin@kpfu.ru ; главный научный сотрудник, д.н. (доцент) Калимуллин И.Ш. учебно-исследовательская лаборатория алгоритмических методов алгебры и логики Кафедра алгебры и математической логики , Iskander.Kalimullin@kpfu.ru

1. Цели освоения дисциплины

Главной целью освоения дисциплины (модуля) "Дискретная математика и математическая логика" является обучение студентов методам решения задач дискретной математики и соответствующему мышлению. В процессе обучения требуется дать студентам запас базовых знаний по основным разделам дискретной математики, обучить рациональному и эффективному использованию полученных знаний при решении типовых задач дискретной математики и математической логики; сформировать у студентов представление о дискретной математике и математической логике как методах изучения широкого круга объектов и процессов, характеризующихся отсутствием свойства непрерывности; сформировать знания, умения и навыки использования основных понятий теории графов, теории автоматов, теории булевых функций. Формирование логической и математической культуры студента, фундаментальная подготовка в области математической логики, овладение современным математическим аппаратом для дальнейшего использования в приложениях.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.Б.12 Дисциплины (модули)" основной образовательной программы 01.03.01 Математика и относится к базовой (общепрофессиональной) части. Осваивается на 1, 2 курсах, 2, 4 семестры.

Дискретная математика и математическая логика входит в цикл профессиональных дисциплин в базовой части. Для успешного изучения дискретной математики и математической логики необходимы знания и умения в объеме школьной программы по математике, общие понятия и факты из математического анализа, линейной алгебры.

Освоение дискретной математики и математической логики необходимо для эффективного использования возможностей современной вычислительной техники, изучения программирования и информатики. Знание основ дискретной математики и математической логики необходимо практически в любой современной научно-исследовательской работе. Место дисциплины в структуре ООП бакалавриата:Б3.Б.4 Дисциплина изучается на 1,2 курсе, 2,3 семестр.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-10 (общекультурные компетенции)	умением находить, анализировать и контекстно обрабатывать научно-техническую информацию
OK-11 (общекультурные компетенции)	фундаментальной подготовкой по основам профессиональных знаний и готовностью к использованию их в профессиональной деятельности
ОК-6 (общекультурные компетенции)	способностью применять знания на практике

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-2 (профессиональные компетенции)	умением понять поставленную задачу
ПК-3 (профессиональные компетенции)	умением формулировать результат
ПК-10 (профессиональные компетенции)	пониманием корректности постановок задач
ПК-11 (профессиональные компетенции)	самостоятельным построением алгоритма и его анализ
ПК-15 (профессиональные компетенции)	способностью передавать результат проведенных физико-математических и прикладных исследований в виде конкретных рекомендаций, выраженных в терминах предметной области изучавшегося явления
ПК-16 (профессиональные компетенции)	выделением главных смысловых аспектов в доказательствах
ПК-19 (профессиональные компетенции)	владением методом алгоритмического моделирования при анализе постановок математических задач
ПК-20 (профессиональные компетенции)	владением методами математического и алгоритмического моделирования при решении прикладных задач
ПК-21 (профессиональные компетенции)	владением методами математического и алгоритмического моделирования при анализе теоретических проблем и задач
ПК-24 (профессиональные компетенции)	владением методами математического и алгоритмического моделирования при анализе управленческих задач в научно-технической сфере
ПК-27 (профессиональные компетенции)	умением точно представить математические знания в устной форме
ПК-4 (профессиональные компетенции)	умением строго доказать утверждение
ПК-5 (профессиональные компетенции)	умением на основе анализа увидеть и корректно сформулировать результат
ПК-6 (профессиональные компетенции)	умением самостоятельно увидеть следствия сформулированного результата
ПК-7 (профессиональные компетенции)	умением грамотно пользоваться языком предметной области
ПК-8 (профессиональные компетенции)	умением ориентироваться в постановках задач
(ПК-9 (профессиональные компетенции)	знанием корректных постановок классических задач

В результате освоения дисциплины студент:

1. должен знать:

основные понятия дискретной математики и математической логики, определения и свойства математических объектов, используемых в этой области, формулировки утверждений, методы их доказательства, возможные сферы их приложений.

2. должен уметь:

решать задачи теоретического и прикладного характера из различных разделов дискретной математики и математической логики, доказывать утверждения, строить модели объектов и понятий.

3. должен владеть:

математическим аппаратом дискретной математики и математической логики, методами доказательства утверждений в этой области, навыками алгоритмизации основных задач.

4. должен демонстрировать способность и готовность:

решать задачи теоретического и прикладного характера из различных разделов дискретной математики и математической логики, доказывать утверждения, строить модели объектов и понятий.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 7 зачетных(ые) единиц(ы) 252 часа(ов).

Форма промежуточного контроля дисциплины: экзамен во 2 семестре; экзамен в 4 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Неориентированные графы.	2	1-4	8	8	0	Письменное домашнее задание
2.	Тема 2. Ориентированные графы.	2	5-8	8	8		Контрольная работа
3.	Тема 3. Конечные автоматы	2	9-12	8	8	0	Письменное домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной р их трудоемк (в часах Практические занятия	аботы, сость	Текущие формы контроля
4.	Тема 4. Функции алгебры логики.	2	13-17	8	8	0	Контрольная работа
	Тема 5. Синтаксис и семантика логики предикатов.	4	1-4	8	8	0	Письменное домашнее задание
6.	Тема 6. Исчисление предикатов.	4	5-8	8	8	0	Контрольная работа
1/	Тема 7. Теорема Геделя.	4	9-12	6	8	0	Контрольная работа
8.	Тема 8. Теория моделей.	4	13-17	6	8	0	Письменное домашнее задание
	Тема . Итоговая форма контроля	2		0	0	0	Экзамен
	Тема . Итоговая форма контроля	4		0	0	0	Экзамен
	Итого			60	64	0	

4.2 Содержание дисциплины

Тема 1. Неориентированные графы.

лекционное занятие (8 часа(ов)):

Основные определения и примеры, типы графов, операции над графами; компоненты связности, связные графы; эйлеровы и гамильтоновы графы, теоремы Эйлера и Дирака; основные свойства деревьев, (теорема Кэли о числе деревьев на нумерованных вершинах)*, алгоритм Краскала нахождения остовного дерева наименьшего веса; укладка графа в трехмерном пространстве; планарность, теорема Понтрягина-Куратовского; формула Эйлера для плоских графов. совершенные паросочетания в двудольном графе, трансверсали, теорема Холла, теорема Фробениуса-Кёнига, ранг покрытия и граничный ранг (0-1)-матрицы.

практическое занятие (8 часа(ов)):

Вычисление компонент связности. Проверка эйлеровости и гамильтоновости графа. Применение алгоритма Краскала нахождения остовного дерева наименьшего веса.

Тема 2. Ориентированные графы.

лекционное занятие (8 часа(ов)):

Ориентированные графы: сильная связность, компоненты, конденсация, свойства матрицы смежности; потоки в сетях, теорема Форда-Фалкерсона о максимальном потоке, алгоритм нахождения максимального потока, приложения теоремы о потоках.

практическое занятие (8 часа(ов)):

Нахождение максимального потока в сети по методу Форда-Фалкерсона. Приложения метода Форда-Фалкерсона к различным оптимизационным задачам.

Тема 3. Конечные автоматы

лекционное занятие (8 часа(ов)):

Конечные автоматы и способы их задания, примеры; формальные языки; языки, распознаваемые конечными автоматами; теорема Майхилла-Нероуда о распознаваемости языков; эквивалентные состояния, минимизация автомата, распознающего данный язык; алгебра языков, распознаваемых конечными автоматами; регулярные языки, теорема Клини, пример нерегулярного языка.

практическое занятие (8 часа(ов)):

Построение автомата, распознающего заданный язык. Вычисление эквивалентных состояний автомата и минимизация автомата, распознающего данный язык.

Тема 4. Функции алгебры логики.

лекционное занятие (8 часа(ов)):

Функции алгебры логики; табличный способ задания; существенные и несущественные переменные; формулы; эквивалентность формул; элементарные эквивалентности; разложение функций по переменным, совершенная дизъюнктивная нормальная форма (с.д.н.ф.) и совершенная конъюнктивная нормальная форма (с.к.н.ф.). Полиномы Жегалкина. Проблема полноты системы функций, примеры полных систем. Классы Поста и теорема Поста о полноте систем функций; предполные классы.

практическое занятие (8 часа(ов)):

Построение таблиц истинности для логических функций. Проверка эквивалентности формул. Вычисление с.д.н.ф. и с.д.н.ф. и полинома Жегалкина для данной логической функции. Проверка полноты системы функций.

Тема 5. Синтаксис и семантика логики предикатов.

лекционное занятие (8 часа(ов)):

Предмет математической логики. Вопросы оснований математики. Логика предикатов. Предикаты. Кванторы. Языки первого порядка: термы, формулы, подформулы. Модели (алгебраические системы, интерпретации) для данного языка первого порядка. Истинность замкнутой формулы в данной модели. Предикаты, выразимые в данной модели.

практическое занятие (8 часа(ов)):

Решение задач по интерпретации формул первого порядка в различных математических моделях.

Тема 6. Исчисление предикатов.

лекционное занятие (8 часа(ов)):

Исчисление предикатов. Аксиомы и правила вывода исчисления предикатов. Выводимость в теории. Теорема о дедукции для исчисления предикатов. Правила введения и удаления логических символов.

практическое занятие (8 часа(ов)):

Решение задач по доказательству формул в исчислении предикатов.

Тема 7. Теорема Геделя.

лекционное занятие (6 часа(ов)):

Модель для данного множества замкнутых формул. Теорема Геделя о существовании модели. Теорема Геделя о полноте исчисления предикатов. Теорема Мальцева о компактности для логики предикатов.

практическое занятие (8 часа(ов)):

Решение задач по приложениям исчисления предикатов в теории моделей.

Тема 8. Теория моделей.

лекционное занятие (6 часа(ов)):

Элементарная теория данной модели. Элементарная эквивалентность моделей, элементарная подмодель. Теорема Лёвенгейма-Сколема. Разрешимость теории плотных линейно упорядоченных множеств без первого и последнего элемента. Другие примеры полных эффективно аксиоматизируемых теорий (без доказательств).

практическое занятие (8 часа(ов)):

Решение задач по заданию полных аксиоматических систем

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Неориентированные графы.	2	1-4	подготовка домашнего задания	11	домашнее задание
2.	Тема 2. Ориентированные графы.	2	5-8	подготовка к контрольной работе	11	контрольная работа
3.	Тема 3. Конечные автоматы	2	9-12	подготовка домашнего задания	11	домашнее задание
4.	Тема 4. Функции алгебры логики.	2	13-17	подготовка к контрольной работе	11	контрольная работа
5.	Тема 5. Синтаксис и семантика логики предикатов.	4	1-4	подготовка домашнего задания	8	домашнее задание
6.	Тема 6. Исчисление предикатов.	4	5-8	подготовка к контрольной работе	7	контрольная работа
7.	Тема 7. Теорема Геделя.	4	9-12	подготовка к контрольной работе	8	контрольная работа
8.	Тема 8. Теория моделей.	4	13-17	подготовка домашнего задания	7	домашнее задание
	Итого				74	

5. Образовательные технологии, включая интерактивные формы обучения

активные и интерактивные формы: лекции, практические занятия, контрольные работы, экзамены.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Неориентированные графы.

домашнее задание, примерные вопросы:

Прверить на изоморфизм два заданных графа.

Тема 2. Ориентированные графы.

контрольная работа, примерные вопросы:

Найти конденсацию орграфа

Тема 3. Конечные автоматы

домашнее задание, примерные вопросы:

Построить конечный автомат, распознающий заданный язык.

Тема 4. Функции алгебры логики.

контрольная работа, примерные вопросы:

Привести функцию к СДНФ.

Тема 5. Синтаксис и семантика логики предикатов.

домашнее задание, примерные вопросы:

Проверить истинность формул в заданных интерпретациях.

Тема 6. Исчисление предикатов.

контрольная работа, примерные вопросы:

По заданным формулам определить, будет ли одна из них выводиться из другой. Проверить формулы на эквивалентность.

Тема 7. Теорема Геделя.

контрольная работа, примерные вопросы:

Проверить, является ли одна из заданных формул логическим следствием другой.

Тема 8. Теория моделей.

домашнее задание, примерные вопросы:

Проверить независимость заданной формулы в аксиоматической системе

Итоговая форма контроля

экзамен (в 4 семестре)

Итоговая форма контроля

экзамен (в 2 семестре)

Примерные вопросы к экзамену:

- 1. Маршруты, цепи, циклы, простые цепи и циклы. Связные графы, компоненты. Теорема о числе рёбер связного графа (количество рёбер не меньше, чем количество вершин минус единица).
- 2. Эйлеровы графы и теорема Эйлера.
- 3. Гамильтоновы графы и теорема Дирака.
- 4. Понятие дерева и теорема об эквивалентных свойствах деревьев.
- 5. Алгоритм Краскала построения минимального остовного дерева графа (с обоснованием).
- 6. Задача о свадьбах. Теорема Холла. Интерпретация на языке двудольных графов.
- 7. Теорема Фробениуса-Кёнига о (0,1)-матрицах и её связь с задачей о свадьбах. Граничный ранг и ранг покрытия (0,1)-матрицы. Теорема Кенига Эгервари.
- 8. Ориентированные графы. Пути, простые пути, контуры и простые контуры. Сильно связные графы, компоненты и конденсация орграфа.
- 9. Матрица смежности графа и её свойства в ориентированном и неориентированном случаях.
- 10. Понятия сети и потока в сети. Лемма о потоках через разрезы и определение величины потока.
- 11. Алгоритм Форда Фалкерсона. Теорема о максимальном потоке и минимальном разрезе.
- 12. Автоматы, настроенные автоматы и понятие распознаваемости языка. Пример языка, не распознаваемого конечным автоматом.
- 13. Отношение неразличимости (эквивалентности) слов относительно языка и его свойства. Ранг языка. Критерий Майхилла Нероуда распознаваемости языка конечным автоматом.
- 14. Понятие базиса слов относительно языка и теорема о базисе. Табличный метод построения распознающего автомата по данному языку.
- 15. Теоремы о замкнутости класса конечно распознаваемых языков относительно дополнения, объединения и пересечения.

- 16. Логические функции. Табличный способ задания. Формулы, эквивалентность формул, основные эквивалентности. СДНФ, СКНФ и полиномы Жегалкина.
- 17. Определение классов Поста логических функций и доказательство их замкнутости.
- 18. Теорема Поста о полноте системы функций.

7.1. Основная литература:

- 1.Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. Издание 2-е, исправленное и дополненное. Санкт-Петербург [и др.]: Лань, 2010. 362 с.
- 2. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. Издание 2-е, исправленное и дополненное. Санкт-Петербург [и др.]: Лань, 2010. 368c. URL: http://e.lanbook.com/books/element.php?pl1_id=536
- 3.Дискретная математика: графы и автоматы: учеб. пособие / Ю.А. Альпин, С.Н. Ильин; Казан. гос. ун-т. Казань: [Казан.гос. ун-т], 2007. 77, [1] с.
- 4.Математическая логика: Учебное пособие / В.И. Игошин. М.: ИНФРА-М, 2012. 399 с. URL: http://znanium.com/bookread.php?book=242738

7.2. Дополнительная литература:

- 1.Гаврилов, Г.П. Задачи и упражнения по дискретной математике. [Электронный ресурс] / Г.П. Гаврилов, А.А. Сапоженко. М.: Физматлит, 2009. 416 с. URL: http://e.lanbook.com/book/2157
- 2. Алгоритмы решения оптимизационных задач на графах : учеб. пособие / И.Я. Заботин, В.Р. Фазылов, О.Н. Шульгина ; Казан. гос. ун-т. Казань: Казан. гос. ун-т, 2006. 66 с.
- 3. Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств. М: МЦНМО, 2008. 128 с. //http://e.lanbook.com/view/book/9306/
- 4. Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. М: МЦНМО, 2008. 288 с. //http://e.lanbook.com/view/book/9307/
- 5. Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. М: МЦНМО, 2008. 192 с. //http://e.lanbook.com/view/book/9308/

7.3. Интернет-ресурсы:

Асанов, М.О. Дискретная математика: графы, матроиды, алгоритмы. [Электронный ресурс] / М.О. Асанов, В.А. Баранский, В.В. Расин. ? Электрон. дан. ? СПб. : Лань, 2010. ? 368 с. - https://e.lanbook.com/reader/book/536/#1

Ашманов, С.А. Теория оптимизации в задачах и упражнениях. [Электронный ресурс] : учеб. пособие / С.А. Ашманов, А.В. Тимохов. Электрон. дан. СПб. : Лань, 2012. 448 с. - https://e.lanbook.com/reader/book/3799/#1

Лихтарников Л.М., Сукачева Т.Г. Математическая логика. Курс лекций. Задачник-практикум и решения. М.: Лань, 2009. - 288 с. - https://e.lanbook.com/reader/book/231/#1

Ржевский С.В. Исследование операций [Электронный ресурс] / С.В. Ржевский. - Санкт-Петербург: Лань. - 2013. - 480 с. - https://e.lanbook.com/reader/book/32821/#1

Палютин E.A. Математическая логика - http://znanium.com/bookread2.php?book=395379

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Дискретная математика и математическая логика" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Аудитории для лекций и практических занятий. Рекомендованная для освоения курса литература, компьютеры, ксерокс, проектор.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.01 "Математика" и профилю подготовки Общий профиль .

Автор(ы):		
Альпин Ю.А	·	
Калимуллин	И.Ш	
""	201 г.	
Рецензент(ь	ı):	
Киндер М.И		
""	201 г.	