МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

CASE технологии Б3.ДВ.8

Направление подготовки: 230400.62 - Информационные системы и технологии
Профиль подготовки: Информационные системы в образовании

Квалификация выпускника: бакалавр

Форма обучения: очное Язык обучения: русский

Автор(ы):

Гатиатуллин А.Р., Гафаров Ф.М.

Рецензент(ы): Хадиев Р.М.

CO	СΠ	ΙΛ.	\sim	סר	• •	ч	\smallfrown	
CU	1 /	А	U	JD	А	п	U	

COI JIACOBAHO:	
Заведующий(ая) кафедрой: Галимянов А. Протокол заседания кафедры No от "	
Учебно-методическая комиссия Института технологий: Протокол заседания УМК No от "	а вычислительной математики и информационных " 201г
Регистрационный No 961414	

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) Гатиатуллин А.Р., Ajrat.Gatiatullin@kpfu.ru; доцент, к.н. (доцент) Гафаров Ф.М. Кафедра информационных систем отделение фундаментальной информатики и информационных технологий, Fail.Gafarov@kpfu.ru

1. Цели освоения дисциплины

Дисциплина "CASE технологии" посвящена изучению представлений о CASE технологиях.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "БЗ.ДВ.8 Профессиональный" основной образовательной программы 230400.62 Информационные системы и технологии и относится к дисциплинам по выбору. Осваивается на 3 курсе, 5, 6 семестры.

Дисциплина является курсом по выбору и относится к вариативной части профессионального цикла.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-5 (общекультурные компетенции)	умение применять методы и средства познания, обучения и самоконтроля для интеллектуального развития, повышения культурного уровня, профессиональной компетенции, сохранения своего здоровья, нравственного и физического самосовершенствования
ОК-6 (общекультурные компетенции)	владение широкой общей подготовкой (базовыми знаниями) для решения практических задач в области информационных систем и технологий
ОК-7 (общекультурные компетенции)	умение критически оценивать свои достоинства и недостатки, наметить пути и выбрать средства развития достоинств и устранения недостатков
ПК-4 (профессиональные компетенции)	способность проводить выбор исходных данных для проектирования
ПК-8 (профессиональные компетенции)	способность проводить расчет обеспечения условий безопасной жизнедеятельности
ПК-16 (профессиональные компетенции)	готовность участвовать в работах по доводке и освоению информационных технологий в ходе внедрения и эксплуатации информационных систем

В результате освоения дисциплины студент:

1. должен знать:

принципы, положенные в основу современной программной инженерии, и овладеть приёмами работы с основными классами средств поддержки ЖЦПО.

2. должен уметь:

использовать средства поддержки ЖЦПО.

3. должен владеть:

навыками объектно-ориентированного анализа, проектирования и конструирования ПО с использованием объектно-ориентированного подхода, осознанного выбора платформы разработки и развёртывания ПО, использования средств поддержки ЖЦПО.

4. должен демонстрировать способность и готовность: использовать CASE-средства и CASE-технологии

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 5 зачетных(ые) единиц(ы) 180 часа(ов).

Форма промежуточного контроля дисциплины отсутствует в 5 семестре; экзамен в 6 семестре. Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету

28 баллов. 86 баллов и более - "отлично" (отл.); 71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные занятия работы		Текущие формы контроля	
1.	Тема 1. Введение. Жизненный цикл программного обеспечения. Программные платформы.	5	1-2	4	0	4	домашнее задание
2.	Тема 2. Структурный подход к проектированию ИС. Методология SADT	5	9-10	4	0	4	домашнее задание
3.	Тема 3. Моделирование потоков данных (процессов). Методология IDEF1 и IDEF1X.	5	17-18	6	0	6	домашнее задание
4.	Тема 4. Идентификация сущностей. Представление о ключах.	5	5-6	4	0	4	домашнее задание
5.	Тема 5. Программные средства поддержки жизненного цикла ПО.	6	9-10	6	0	6	домашнее задание

N	дисциплины/ Семестр		Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля				Практические занятия	Лабораторные работы	-
6.	Тема 6. Язык UML. Основные элементы языка UML. Диаграммы классов. Диаграммы взаимодействия.	6	11-12	6	0	6	домашнее задание
7.	Тема 7. Диаграммы состояний. Диаграммы пакетов, компонентов и размещения	6	17-18	6	0	6	домашнее задание
	Тема . Итоговая форма контроля	6		0	0	0	экзамен
	Итого			36	0	36	

4.2 Содержание дисциплины

Тема 1. Введение. Жизненный цикл программного обеспечения. Программные платформы.

лекционное занятие (4 часа(ов)):

Введение. Понятие и основные положения жизненного цикла программного обеспечения. Промышленное производство программных продуктов. Основные программные платформы.

лабораторная работа (4 часа(ов)):

Лабораторная работа "Жизненный цикл программного обеспечения"

Тема 2. Структурный подход к проектированию ИС. Методология SADT лекционное занятие (4 часа(ов)):

Основные положения структурного подхода к проектированию ИС. Состав функциональной модели SADT. Иерархия диаграмм. Типы связей между функциями.

лабораторная работа (4 часа(ов)):

Лабораторная работа "Методология SADT а разработке ПО"

Тема 3. Моделирование потоков данных (процессов). Методология IDEF1 и IDEF1X. *пекционное занятие (6 часа(ов)):*

DEF1X. Концепция и семантика IDEF1X. Сущности в IDEF1X и их атрибуты. Связи между сущностями. Моделирование потоков данных (процессов). DFD-Data Flow Diagrams. Моделирование данных.

лабораторная работа (6 часа(ов)):

Лабораторная работа "Методология IDEF1"

Тема 4. Идентификация сущностей. Представление о ключах.

лекционное занятие (4 часа(ов)):

Идентификация сущностей. Представление о ключах. Классификация сущностей в IDEF1X. Зависимые и независимые сущности.

лабораторная работа (4 часа(ов)):

Лабораторная работа "Идентификация сущностей."

Тема 5. Программные средства поддержки жизненного цикла ПО.

лекционное занятие (6 часа(ов)):

Методологии проектирования ПО как программные продукты. Методология DATARUN. Инструментальное средство SE Companion. CASE-средства. Общая характеристика и классификация

лабораторная работа (6 часа(ов)):

Лабораторная работа "Средства поддержки жизненного цикла ПО"

Tema 6. Язык UML. Основные элементы языка UML. Диаграммы классов. Диаграммы взаимодействия.

лекционное занятие (6 часа(ов)):

Основные положения языка UML. Основные элементы языка UML. Основные типы связей языка UML. Диаграммы вариантов использования UML. Диаграммы классов. Диаграммы взаимодействия и их использование.

лабораторная работа (6 часа(ов)):

Лабораторная работа "Основные элементы языка UML"

Тема 7. Диаграммы состояний. Диаграммы пакетов, компонентов и размещения *лекционное занятие (6 часа(ов)):*

Диаграммы состояний UML. Основные понятия и положения диаграммы пакетов. Компоненты и размещения, и их применение.

лабораторная работа (6 часа(ов)):

Лабораторная работа "Диаграммы состояний"

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Введение. Жизненный цикл программного обеспечения. Программные платформы.	5	1-2	подготовка домашнего задания	6	домашнее задание
2.	Тема 2. Структурный подход к проектированию ИС. Методология SADT	5	9-10	подготовка домашнего задания	6	домашнее задание
3.	Тема 3. Моделирование потоков данных (процессов). Методология IDEF1 и IDEF1X.	5	17-18	подготовка домашнего задания	6	домашнее задание
4.	Тема 4. Идентификация сущностей. Представление о ключах.	5	5-6	подготовка домашнего задания	8	домашнее задание
5.	Тема 5. Программные средства поддержки жизненного цикла ПО.	6	9-10	подготовка домашнего задания	16	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
6	Тема 6. Язык UML. Основные элементы языка UML. Диаграммы классов. Диаграммы взаимодействия.	6	11-12	подготовка домашнего задания	16	домашнее задание
7	Тема 7. Диаграммы состояний. Диаграммы пакетов, компонентов и размещения	6	17-18	подготовка домашнего задания	14	домашнее задание
	Итого				72	

5. Образовательные технологии, включая интерактивные формы обучения

Компьютерные симуляции, мультимедийный проектор

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение. Жизненный цикл программного обеспечения. Программные платформы.

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе "Жизненный цикл программного обеспечения"

Тема 2. Структурный подход к проектированию ИС. Методология SADT

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе "Методология SADT а разработке ПО"

Тема 3. Моделирование потоков данных (процессов). Методология IDEF1 и IDEF1X.

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе "Методология IDEF1"

Тема 4. Идентификация сущностей. Представление о ключах.

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе "Идентификация сущностей"

Тема 5. Программные средства поддержки жизненного цикла ПО.

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе "Средства поддержки жизненного цикла ПО"

Teма 6. Язык UML. Основные элементы языка UML. Диаграммы классов. Диаграммы взаимодействия.

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе "Основные элементы языка UML"

Тема 7. Диаграммы состояний. Диаграммы пакетов, компонентов и размещения

домашнее задание, примерные вопросы:

Подготовка отчета по лабораторной работе Диаграммы состояний"

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

ВОПРОСЫ К ЗАЧЕТУ

- 1. Жизненный цикл программного обеспечения. Промышленное производство программных продуктов.
- 2. Программные платформы. Классификация ПО.
- 3. Структурный подход к проектированию ИС. Методология функционального моделирования SADT.
- 4. Состав функциональной модели. Иерархия диаграмм. Типы связей между функциям.
- 5. Методология IDEF0.
- 6. Моделирование потоков данных (процессов). DFD-Data Flow Diagrams.
- 7. Моделирование данных.
- 8. Case-метод Баркера. Методология IDEF1.
- 9. Концепция и семантика IDEF1X. Сущности в IDEF1X и их атрибуты. Связи между сущностями. Идентификация сущностей. Представление о ключах.
- 10. Классификация сущностей в IDEF1X. Зависимые и независимые сущности.
- 11. Программные средства поддержки жизненного цикла ПО.
- 12. Язык UML. Основные элементы языка UML.
- 13. Основные типы связей языка UML.
- 14. Диаграммы вариантов использования.
- 15. Диаграммы классов.
- 16. Диаграммы взаимодействия.
- 17. Диаграммы состояний.
- 18. Диаграммы пакетов, компонентов и размещения

7.1. Основная литература:

Использование CASE-средств в анализе и проектировании информационных систем, Галимянов, Фанис Анисович;Миннегалиева, Чулпан Бакиевна, 2011г.

Информатика. Базовый курс, Симонович, С. В., 2008г.

- 3. Назарова О. Б. Разработка реляционных баз данных с использованием CASE-средства All Fusion Data Modeler [Электронный ресурс]: учеб.- метод. пособие / О. Б. Назарова, О. Е. Масленникова. 2-е изд., стер. М.: ФЛИНТА, 2013. 74 с. ISBN 978-5-9765-1601-4. http://znanium.com/bookread.php?book=466163
- 4. Проектирование информационных систем: учеб. пособие / Н.З. Емельянова, Т.Л. Партыка, И.И. Попов. М.: Форум, 2009. 432 с.: ил.; 60х90 1/16. (Профессиональное образование). (переплет) ISBN 978-5-91134-274-6, 2000 экз. http://znanium.com/bookread.php?book=154007
- 5. Основы построения автоматизированных информационных систем: Учебник / В.А. Гвоздева, И.Ю. Лаврентьева. М.: ИД ФОРУМ: НИЦ Инфра-М, 2013. 320 с.: ил.; 60х90 1/16. (Профессиональное образование). (переплет) ISBN 978-5-8199-0315-5, 2000 экз. http://znanium.com/bookread.php?book=392285

7.2. Дополнительная литература:

Интеллектуальные информационные системы, Андрейчиков, Александр Валентинович; Андрейчикова, Ольга Николаевна, 2004г.

2. Сырецкий, Г. А. Информатика. Фундаментальный курс. Том II. Информационные технологии и системы /Г. А. Сырецкий. ? СПб.: БХВ-Петербург, 2007. ? 846 с. URL: http://znanium.com/bookread.php?book=350042

7.3. Интернет-ресурсы:

CASE ТЕХНОЛОГИИ ПРОЕКТИРОВАНИЯ ЭИС - http://pki-exam.narod.ru/is/list16.html CASE-технологии - http://orags.narod.ru/manuals/inf_zo/texts/itu3_5.htm CASE-технологии: что, когда, как? - http://citforum.ru/programming/case/gnatush/case/ Информационные технологии - http://technologies.su/case Современные CASE-технологии - http://www.hardline.ru/2/22/986/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "CASE технологии" предполагает использование следующего материально-технического обеспечения:

Компьютерный класс

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 230400.62 "Информационные системы и технологии" и профилю подготовки Информационные системы в образовании .

Программа дисциплины "CASE технологии"; 230400.62 Информационные системы и технологии; Гатиатуллин А.Р. , доцент, к.н. (доцент) Гафаров Ф.М.

Автор(ы):			
Гатиатуллин	A.P		
Гафаров Ф.М	/l		
" "	201 _	_ Г.	
Рецензент(ы):		
Хадиев Р.М.			
"_"	201 _	_ Г.	