МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

УТВЕРЖДАЮ

Проректор по образовательной деятельности КФУ Проф. Минзарипов Р.Г. 20 г.

Программа дисциплины

Современные методы синтеза и исследования наноструктур мгг. в.з
Направление подготовки: <u>011200.68 - Физика</u>
Профиль подготовки: Физика конденсированного состояния
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
<u>Тагиров Л.Р.</u>
Рецензент(ы):
<u>Деминов Р.Г.</u>
СОГЛАСОВАНО:
Заведующий(ая) кафедрой:
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института физики:
Протокол заседания УМК No от "" 201г

Регистрационный No

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) заведующий кафедрой, д.н. (профессор) Тагиров Л.Р. Кафедра физики твердого тела Отделение физики , Itagirov@mail.ru

1. Цели освоения дисциплины

Изучение основ теории и практики современных методов синтеза и исследования наноразмерных структур. Теоретическое овладение методами синтеза и характеризации низкоразмерных структур.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.3 Профессиональный" основной образовательной программы 011200.68 Физика и относится к вариативной части. Осваивается на 2 курсе, 3 семестр.

Является частью Р.4 модуля М.2 профессионального цикла. Изучение данной дисциплины базируется на вузовской подготовке студентов по модулям высшей математика, общая физика (разделы: "Молекулярная физика", "Электричество", "Атомная физика") теоретическая физика (разделы "Электродинамика", "Квантовая теория", "Статистическая физика"). Осваивается на шестом курсе (семестр В).

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

В результате освоения дисциплины студент:

1. должен знать:

основные типы современных методов синтеза и исследования наноструктур

2. должен уметь:

выделить конкретное физическое содержание в прикладных задачах будущей деятельности и формулировать задачи; использовать полученные знания при решении профессиональных задач, связанных со свойствами наноструктур.

3. должен владеть:

навыками системного научного анализа проблем (как природных, так и профессиональных) различного уровня сложности; работы с лабораторным оборудованием и современной научной аппаратурой; проведения физического эксперимента.

применять на практике базовые профессиональные знания теории и методов физических исследований; пользоваться современными методами обработки, анализа и синтеза физической информации; понимать и излагать получаемую информацию и представлять результаты физических исследований.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.); 54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные			Текущие формы контроля
				Лекции	занятия	работы	
	Тема 1. Традиционные методы осаждения пленок	3	1	2	1	0	устный опрос
	Тема 2. Метолы, использующие сканирующие зонды	3	2	2	2	0	устный опрос
3.	Тема 3. Нанолитография	3	3	2	0	0	устный опрос
	Тема 4. Саморегулирующиеся процессы	3	4	2	0	0	устный опрос
	Тема 5. Формирование наноструктурированных материалов		5	2	4	0	устный опрос
ال.	Тема 6. Микроскопия Дифракционный анализ.Спектральный анализ.	3	6-10	3	6	0	устный опрос
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			13	13	0	

4.2 Содержание дисциплины

Тема 1. Традиционные методы осаждения пленок

лекционное занятие (2 часа(ов)):

1.1. Осаждение из химических паров. 1.2. Молекулярно-лучевая эпитаксия. 1.3. Магнетронное распыление. 1.4. Импульсное лазерное испарение. 1.5. Осаждение атомарных слоев (газофазная эпитаксия).

практическое занятие (1 часа(ов)):

Магнетронное распыление. Импульсное лазерное испарение.

Тема 2. Метолы, использующие сканирующие зонды

лекционное занятие (2 часа(ов)):

2.1. Физические основы, атомная инженерия. 2.2. Локальное окисление металлов и полупроводников. 2.3. Локальное химическое осаждение из газовой фазы.

практическое занятие (2 часа(ов)):

Локальное окисление металлов и полупроводников.

Тема 3. Нанолитография

лекционное занятие (2 часа(ов)):

- 3.1. Электронно-лучевая литография. 3.2. Профилирование резистов сканирующими зондами.
- 3.3. Нанопечать. 3.4. Сравнение нанолитографических методов.

Тема 4. Саморегулирующиеся процессы

лекционное занятие (2 часа(ов)):

4.1. Самосборка. 4.2. Самоорганизация в объемных материалах. 4.3. Самоорганизация при эпитаксии. 4.4. Осаждение пленок Ленгмюра-Блоджетт.

Тема 5. Формирование наноструктурированных материалов *лекционное занятие (2 часа(ов)):*

5.1. Пористый кремний. 5.2. Пористый оксид алюминия и структуры на его основе. 5.3. Углеродные нанотрубки и фуллерены.

практическое занятие (4 часа(ов)):

Углеродные нанотрубки и фуллерены.

Тема 6. Микроскопия Дифракционный анализ. Спектральный анализ. *лекционное занятие (3 часа(ов)):*

6.1. Просвечивающая электронная микроскопия. 6.2. Автоэлектронная и автоионная микроскопия. 6.3. Сканирующая электронная микроскопия. 6.4. Сканирующая туннельная микроскопия. 6.5. Атомно-силовая микроскопия. 6.6. Сканирующая оптическая микроскопия ближнего поля. 7.1. Рентгеновская дифракция. 7.2. Дифракция электронов. 8.1.

Рентгеновская спектроскопия. 8.2. Оже-спектроскопия. 8.3. Фотоэлектронная спектроскопия. 8.4. Инфракрасная спектроскопия. 8.5. Комбинационное рассеяние света. 8.6.

Люминесцентный анализ. 8.7. Радиоспектроскопия. 8.8. Мессбауэровская спектроскопия.

практическое занятие (6 часа(ов)):

Сканирующая туннельная микроскопия. Рентгеновская дифракция. Мессбауэровская спектроскопия.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Традиционные методы осаждения пленок	3	1	Опрос/устный опрос	1	Опрос/устный опрос
2.	Тема 2. Метолы, использующие сканирующие зонды	3	2	Опрос/устный опрос	1	Опрос/устный опрос
3.	Тема 3. Нанолитография	3	3	Опрос/устный опрос	1	Опрос/устный опрос
4.	Тема 4. Саморегулирующиеся процессы	3	4	Опрос/устный опрос	2	Опрос/устный опрос
5.	Тема 5. Формирование наноструктурированных материалов		5	Опрос/устный опрос	2	Опрос/устный опрос
6.	Тема 6. Микроскопия Дифракционный анализ.Спектральный анализ.	3	6-10	Опрос/устный опрос	2	Опрос/устный опрос
	Итого				9	

5. Образовательные технологии, включая интерактивные формы обучения

Лекции, самостоятельная работа студента, консультации. Лекционные занятия предполагают использование аудитории, оснащенной современным мультимедийным оборудованием.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Традиционные методы осаждения пленок

Опрос/устный опрос, примерные вопросы:

Тема 2. Метолы, использующие сканирующие зонды

Опрос/устный опрос, примерные вопросы:

Тема 3. Нанолитография

Опрос/устный опрос, примерные вопросы:

Тема 4. Саморегулирующиеся процессы

Опрос/устный опрос, примерные вопросы:

Тема 5. Формирование наноструктурированных материалов

Опрос/устный опрос, примерные вопросы:

Тема 6. Микроскопия Дифракционный анализ. Спектральный анализ.

Опрос/устный опрос, примерные вопросы:

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Текущий контроль успеваемости осуществляется на основании письменных контрольных работ и отчетов по индивидуальным заданиям. Итоговый контроль осуществляется в форме устного зачета по лекционному курсу. Самостоятельная работа студентов заключается в повторении лекционного материала (конспекты лекций), изучении материала, вынесенного на самостоятельное изучение (рекомендованная литература), выполнении контрольных работ.

7.1. Основная литература:

- 1. Гусев, А. И. Наноматериалы, наноструктуры, нанотехнологии / А. И. Гусев. М.: Физматлит, 2005. 416 с.
- 2. Суздалев, И. П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов / И. П. Суздалев. М.: КомКнига, 2006. 592 с.
- 3. Миронов, В. Л. Основы сканирующей зондовой микроскопии / В. Л. Миронов. М.: Техносфера, 2005. 144 с.
- 3. Елисеев, А. А. Функциональные наноматериалы / А. А. Елисеев, А. В. Лукашин. М.: Физматлит, 2010. 456 с.
- 4. Наноматериалы и нанотехнологии / В. М. Анищик и др. Минск: Издательский центр БГУ, 2008. 375 с.
- 5. Рамбиди, Н. Г. Физические и химические основы нанотехнологий / Н. Г. Рамбиди, А. В. Березкин. М.: Физматлит, 2008. 456 с.

7.2. Дополнительная литература:

- 1. Рыжонков, Д. И. Наноматериалы : учебное пособие / Д. И. Рыжонков, В. В. Лёвина, Э. Л. Дзидзигури. 2-е изд. М. : БИНОМ. Лаборатория знаний, 2010. 365 с.
- 2. Дьячков, П. Н. Электронные свойства и применение нанотрубок / П. Н. Дьячков. М. : БИНОМ. Лаборатория знаний, 2011. 488 с.

3. Гриднев, С. А. Нелинейные явления в нано- и микрогетерогенных системах / С. А. Гриднев, Ю. Е. Калинин, А. В. Ситников, О. В. Стогней. - М. : БИНОМ. Лаборатория знаний, 2012. - 352 с.

7.3. Интернет-ресурсы:

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Современные методы синтеза и исследования наноструктур" предполагает использование следующего материально-технического обеспечения:

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011200.68 "Физика" и магистерской программе Физика конденсированного состояния.

Программа дисциплины "Современные методы синтеза и исследования наноструктур"; 011200.68 Физика; заведующий кафедрой, д.н. (профессор) Тагиров Л.Р.

Автор(ы):			
Тагиров Л.Р			
" "	201	Г.	
Рецензент(ы):			
Деминов Р.Г.			
" "	201	Г.	