МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Химический институт им. А.М. Бутлерова

УТВЕРЖДАЮ

Программа дисциплины

Программирование на языке С и С++ и JAVA M2.B.4

Направление подготовки: 020100.68 - Химия
Профиль подготовки: Хемоинформатика и молекулярное моделирование
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):
Андрианова А.А., Мухтарова Т.М.
Рецензент(ы):
Миссаров М.Д.
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Латыпов Р. Х.
Протокол заседания кафедры No от ""201г
Учебно-методическая комиссия Химического института им. А.М. Бутлерова:
Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2013

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Андрианова А.А. кафедра системного анализа и информационных технологий отделение фундаментальной информатики и информационных технологий, Anastasiya. Andrianova@kpfu.ru; ассистент, б/с Мухтарова Т.М. кафедра анализа данных и исследования операций отделение фундаментальной информатики и информационных технологий, Tatyana. Moukhtarova@kpfu.ru

1. Цели освоения дисциплины

Данная учебная дисциплина реализуется как цикл лекционных и лабораторных занятий, которые знакомят студентов с основами программирования на языках программирования высокого уровня С, С++ и Java. В рамках данного курса студенты должны получить представление об основных синтаксических конструкциях языков программирования С, С++, Java (типы данных, объявление переменных, операции и операторы языка), о структурном и объектно-ориентированном стиле программирования, получить базовые навыки разработки программ, использования структур данных, массивов, файлов, библиотек, построении графического интерфейса приложений, использовании апплетов и сервлетов, написанных на Java.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.4 Профессиональный" основной образовательной программы 020100.68 Химия и относится к вариативной части. Осваивается на 1 курсе, 1 семестр.

Дисциплина "Программирование на языке C, C++ и Java" изучается в первом семестре первого курса обучающихся по направлению 020100 "Химия", профилю "Хемоинформатика и молекулярное моделирование". Форма обучения - очная. Дисциплина относится к циклу М.2 профессиональных дисциплин, его вариативной части. Цикл - M2.P.4.

Данный курс является базовым для других учебных дисциплин, предусмотренных учебным планом.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-2 (общекультурные компетенции)	умением принимать нестандартные решения
ОК-3 (общекультурные компетенции)	владением иностранным (прежде всего английским) языком в области профессиональной деятельности и межличностного общения
ОК-5 (общекультурные компетенции)	владением современными компьютерными технологиями, применяемыми при обработке результатов научных экспериментов и сборе, обработке, хранении и передачи информации при проведении самостоятельных научных исследований
ПК-10 (профессиональные компетенции)	способностью определять и анализировать проблемы, планировать стратегию их решения
ПК-5 (профессиональные компетенции)	способностью анализировать полученные результаты, делать необходимые выводы и формулировать предложения

В результате освоения дисциплины студент:

- 1. должен знать:
- ? синтаксис и семантику языка программирования C,C++ и Java;
- ? основные алгоритмы обработки массивов данных;
- ? принципы структурного программирования;
- ? принципы объектно-ориентированного программирования.

2. должен уметь:

- ? выбирать алгоритм решения задачи и записывать его на языках программирования C, C++ и Java;
- ? иметь навыки оформления программы в стиле структурного программирования в виде набора пользовательских функций;
- ? уметь применять основные алгоритмы обработки данных;
- ? применять графический интерфейс приложений;
- ? внедрять апплеты и применять сервлеты в web-приложениях.
- 3. должен владеть:
- ? навыками записи алгоритмов на языках программирования C, C++ и Java;
- ? навыками использования массивов, файлов, более сложных структур данных в алгоритмах.

Способность решать поставленные задачи.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля		-	Лекции	Практические занятия	Лабораторные работы	-
	Тема 1. Основные понятия языка С и С++.	1	1,2	4	2		домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	МОДУЛЯ			Лекции	Практические занятия	Лабораторные работы	
2.	Тема 2. Структуры данных	1	3,4	4	4	0	домашнее задание
3.	Тема 3. Использование файлов	1	5,6	4	4	0	домашнее задание
4.	Тема 4. Понятие структурного программирования.	1	7,8	4	4	0	контрольная работа домашнее задание
5.	Тема 5. Основы языка JAVA	1	9,10	4	4	0	домашнее задание
6.	Тема 6. Понятие объектно-ориентирован программирования.	но ц о	11,12	4	4	0	домашнее задание
7.	Тема 7. Работа в среде Интернет для Java-приложений	1	13,14	4	4	0	домашнее задание
8.	Тема 8. Зачет	1		0	2	0	коллоквиум
Ŀ	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Итого			28	28	0	

4.2 Содержание дисциплины

Тема 1. Основные понятия языка С и С++.

лекционное занятие (4 часа(ов)):

Понятие языка программирования. Классификация языков программирования. Понятие алгоритма. Способы записи алгоритма. Языки С и С++. Типы данных. Операция языка. Операторы языка - конструкции ввода и вывода, условный оператор, оператор выбора, операторы цикла, операторы передачи управления.

практическое занятие (2 часа(ов)):

Составление типовых алгоритмов на применение условного оператора и операторов цикла: проверка четности числа, проверка простоты числа, вычисление наибольшего общего делителя, поиск минимального из трех чисел, поиск минимального числа из входного потока и пр.

Тема 2. Структуры данных

лекционное занятие (4 часа(ов)):

Понятие структуры данных. Одномерные и двумерные массивы. Алгоритмы работы с одномерными и двумерными массивами. Понятие динамических структур данных - списки и хэш-таблицы.

практическое занятие (4 часа(ов)):

Решение типовых задач на использование массивов и матриц - среднее арифметическое элементов массива, количество четных элементов в массиве, поиск максимального элемента, сортировка, проверка симметричности массива, проверка симметричности матрицы, работа с диагоналями квадратной матрицы.

Тема 3. Использование файлов

лекционное занятие (4 часа(ов)):

Синтаксис функций работы со строками и файлами. Текстовые и двоичные файлы. Особенности работы. Основные алгоритмы работы с символьными строками и файлами.

практическое занятие (4 часа(ов)):

Решение задач на строки и файлы: поиск слова в строке, подсчет количества слов, трансляция простых записей в формате SMILES.

Тема 4. Понятие структурного программирования.

лекционное занятие (4 часа(ов)):

Понятие структурного программирования. Пользовательская функция. Понятие прототипа пользовательской функции - принципы именования, возвращаемое значение, формальные и фактические параметры. Различные виды передачи параметров в функцию.

практическое занятие (4 часа(ов)):

Решение задач на создание собственных функций сортировки массивов, чтения требуемой информации из файлов и пр.

Тема 5. Основы языка JAVA

лекционное занятие (4 часа(ов)):

История создания языка Java, особенности языка. Понятие виртуальной Java-машины. Синтаксис языка Java. Его отличия от языка C++. Организация ввода-вывода. Правила подключения пакетов. Работа с символьными строками и массивами.

практическое занятие (4 часа(ов)):

Решение задач на строки, массивы и матрицы средствами языка Java.

Тема 6. Понятие объектно-ориентированного программирования.

лекционное занятие (4 часа(ов)):

Понятия объектно-ориентированного программирования: класс, объект, абстрагирование, инкапсуляция, наследование и полиморфизм. Синтаксические правила оформления программы в объектно-ориентированном стиле.

практическое занятие (4 часа(ов)):

Решение задачи построения системы классов представления молекулы по ее формуле. Демонстрируются принципы создания классов, работа с файлами, с коллекциями (списки и хэш-таблицы), а также применяются алгоритмы теории графов.

Тема 7. Работа в среде Интернет для Java-приложений

лекционное занятие (4 часа(ов)):

Реализация графического пользовательского интерфейса в Java. Библиотеки AWT и SWING. Понятие элемента управления. События мыши. клавиатуры, элементов управления. Апплеты как Java-приложения в интернет. Обмен данными апплета с html_страницами.

практическое занятие (4 часа(ов)):

Решение задач на построение графического пользовательского интерфейса - обработка событий различных элементов управления для формирования некоторого изображения, перетаскивание изображения как демонстрация событий мыши, движение объекта с помощью нажатия клавиш "вверх", "вниз", "вправо", "влево". Создание апплета и организация обмена данными с html-страницей.

Тема 8. Зачет

практическое занятие (2 часа(ов)):

Зачет может проходить в трех формах: 1. Создание собственного проекта с выполнение необходимых требований. 2. Поиск ошибок в готовой программе и интерпретация ее алгоритма. Определение по тексту программы задачи, которую эта программа решает. 3. Решение задачи на компьютере за ограниченное время.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Основные понятия языка С и С++.	1	1,2	подготовка домашнего задания	10	домашнее задание
2.	Тема 2. Структуры данных	1	3,4	подготовка домашнего задания	10	домашнее задание
3.	Тема 3. Использование файлов	1	5,6	подготовка домашнего задания	10	домашнее задание
1	Тема 4. Понятие структурного программирования.	1	7,8	подготовка домашнего задания	10	домашнее задание
4.				подготовка к контрольной работе	2	контрольная работа
5.	Тема 5. Основы языка JAVA	1	9,10	подготовка домашнего задания	10	домашнее задание
6.	Тема 6. Понятие объектно-ориентирован программирования.	но п о		подготовка домашнего задания	16	домашнее задание
7.	Тема 7. Работа в среде Интернет для Java-приложений	1	13,14	подготовка домашнего задания	10	домашнее задание
8.	Тема 8. Зачет	1		подготовка к коллоквиуму	10	коллоквиум
	Итого				88	

5. Образовательные технологии, включая интерактивные формы обучения

Дисциплина представляет собой цикл лекционных и лабораторных занятий. Лабораторные занятия посвящены выработке базовых навыков создания и использования программ на языке программирования С для решения различных задач хемоинформатики. Практические занятия проходят в компьютерных классах с использованием интерактивной доски для наглядного представления алгоритмов и разработки программ на всех этапах ее создания и компиляции. Практические занятия проходят в интерактивной форме обсуждения решения различных задач или в активной форме самостоятельного решения задач студентами. Контроль за выполнением самостоятельной работы проявляется в функциональном тестировании выполненных студентами заданий на примерах, предложенных преподавателем.

В качестве зачета учащиеся должны самостоятельно создать в команде собственную программу по заданию преподавателя. Каждый учащийся должен создать собственный модуль программы. Сложность задания состоит в необходимости создания многомодульной программы без наличия ошибок, с необходимыми пояснениями, с использованием знаний, полученных в рамках курса "Управление программным обеспечением".

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основные понятия языка С и С++.

домашнее задание, примерные вопросы:

Задачи на синтаксис языка программирования С++. Например, 1. Поиск даты следующего дня. 2. Определение високосного года. 3. Поиск всех делителей целого числа. 4. Поиск чисел Фибоначчи. 5. Поиск n! и пр.

Тема 2. Структуры данных

домашнее задание, примерные вопросы:

Решение задач на массивы и матрицы. Например, 1. Поиск максимального элемента массива. 2. Поиск максимального из четных элементов массива. 3. Сортировка массива методами вставок, пузырька и выбора. 4. Проверка возрастания массива. 5. Проверка симметричности матрицы. 6. Проверка диагональности матрицы и пр.

Тема 3. Использование файлов

домашнее задание, примерные вопросы:

Задачи на использование строк и файлов: 1. Определение наличия определенного атома в записи химического соединения SMILES, записанной в текстовом файле. 2. Подсчет количества атомов заданного вида в соединении в файле. 3. Поиск информации о химическом элементе в файле, содержащем информацию из таблицы Менделеева. и пр.

Тема 4. Понятие структурного программирования.

домашнее задание, примерные вопросы:

Решение задач на написание собственных функций. 1. Работа с числами. 2. Работа с массивами. 3. Работа с матрицами. 4. Работа с файлами. Задача может быть выбрана студентом самостоятельно из тех, которые решались ранее.

контрольная работа, примерные вопросы:

Контрольная работа призвана проверить знания синтаксиса языка C++, а также принципов структурного программирования. Контрольная работа состоит из двух задач, которые требуют обязательного использования: 1. массивов и матриц; 2. стандартных алгоритмов обработки информации 3. работы с текстовыми файлами.

Тема 5. Основы языка JAVA

домашнее задание, примерные вопросы:

Решение ранее рассмотренных задач на языке Java. Задачи могут быть выбраны студентами произвольно.

Тема 6. Понятие объектно-ориентированного программирования.

домашнее задание, примерные вопросы:

Разработка приложения "Молекула", содержащего классы "Таблицы Менделеева", "Атом", "Молекула". Работа с записью формулы химического соединения, представление молекулярного графа, алгоритмы поиска кратчайших путей и обходов в ширину и глубину для определения наличия в молекуле циклов.

Тема 7. Работа в среде Интернет для Java-приложений

домашнее задание, примерные вопросы:

Написание приложение с графическим пользовательским интерфейсом. Обработка событий. Создание апплета. Тематика приложения может быть произвольной.

Тема 8. Зачет

коллоквиум, примерные вопросы:

Решение типовых задач на все рассмотренные в рамках курса темы.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

6.1. Текущий контроль успеваемости производится с помощью выполнения студентами контрольных работ.

Самостоятельная работа студентов осуществляется посредством самостоятельного решения задач из задачников, а также индивидуальных задач, предлагаемых на занятиях преподавателем.

7.1. Основная литература:

- 1. Андрианова, А.А.Практикум по курсу "Алгоритмизация и программирование". Часть 1 /А.А.Андрианова, Т.М.Мухтарова. Казань: Казанский государственный университет, 2008.- 96 с.
- 2. Андрианова, А.А. Практикум по курсу "Алгоритмизация и программирование". Часть 2. / А.А.Андрианова, Л.Н.Исмагилов, Т.М.Мухтарова. Казань: Казанский государственный университет, 2009.- 132 с.
- 3. Андрианова, А.А. Объектно-ориентированное программирование на С++. Часть 1. / А.А.Андрианова, Л.Н.Исмагилов, Т.М.Мухтарова. Казань: Казанский федеральный университет, 2010.- 124 с.
- 4. Андрианова, А.А. Объектно-ориентированное программирование на С++. Часть 2. / А.А.Андрианова, Л.Н.Исмагилов, Т.М.Мухтарова. Казань: Казанский федеральный университет, 2010.- 116 с.
- 5. Шилдт, Г. Самоучитель С++: Пер. с англ. / Герберт Шилдт.?3-е изд., перераб. и доп..?Санкт-Петербург: БХВ-Петербург, 2003.?683с.
- 6. Хабибуллин, И. Ш. Технология Java: учебно-справочное пособие / И. Ш. Хабибуллин.?Казань: Казанский университет, 2010.?210 с.

7.2. Дополнительная литература:

- 1. Пинягина О.В., Кашина О.А., Андрианова А.А. Практикум по программированию на языке Java.: Учебное пособие/ О.В. Пинягина, О.А. Кашина, А.А. Андрианова Казань: Казанский государственный университет, 2007. 141 с.
- 2. Подбельский, В. В. Язык Си++: Учеб. пособие для студентов вузов, обучающихся по направлениям "Прикладная математика" и "Вычисл. машины, комплексы, системы и сети" / В.В.Подбельский.-5-е изд..-Москва: Финансы и статистика, 2000.-559с.
- 3. Березин, Б. И. Начальный курс С и С++ / Б.И.Березин.-М.: Диалог-Мифи, 1997.?288с.
- 4. Бежанова, М. М. Практическое программирование: структуры данных и алгоритмы: учебник / М. М. Бежанова, Л. А. Москвина, И. В. Поттосин.-Москва: Логос, 2001.?223 с.
- 5. Кондратьева, С.Д. Введение в структуры данных: лекции и упражнения по курсу / С.Д.Кондратьева. М: Изд-во МГТУ им. Н.Э.Баумана, 2000. 376 с.
- 6. Культин, Н.Б. С++ в задачах и примерах. / Н.Б. Культин. СПб: БХВ-Петербург, 2007. 240 с.
- 7. Вирт, Н. Алгоритмы и структуры данных. СПб: Невский Диалект, 2008. -352 с.
- 8. Бишоп, Джуди. Эффективная работа: Java 2 / Джуди Бишоп.-3-е изд.-СПб. и др.: Питер, 2002.?589 с.
- 9. Дейтел, Харви М. Как программировать на Java: Пер. с англ. / Х.М. Дейтел, П.Дж. Дейтел; Пер. с англ.; [С.Н. Халатян и др.] под ред. А.В. Козлова.-4-е изд.-М.: Бином-Пресс, 2003.
- 10. Перри, Брюс У. Java сервлеты и JSP: сб. рецептов: [пер. с англ.] / Брюс У. Перри.-Москва: Кудиц-Образ, 2006.?768 с
- 11. Кубенский, А. А. Создание и обработка структур данных в примерах на Java / Александр Кубенский.-СПб. [и др.]: БХВ-Петербург, 2001.-321 с.

7.3. Интернет-ресурсы:

Интернет-портал с образовательными материалами по ИТ - http://www.intuit.ru

Интернет-портал с ресурсами о программировании на языке C и C++ от компании Microsoft - http://msdn.microsoft.com

Официальный портал для разработчиков на Java -

http://www.oracle.com/technetwork/java/index.html

Официальный сайт интегрированной среды разработки CodeBlocks - www.codeblocks.org

Официальный сайт интегрированной среды разработки netbeans - ww.netbeans.org

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Программирование на языке С и С++ и JAVA" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb). конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 020100.68 "Химия" и магистерской программе Хемоинформатика и молекулярное моделирование .

Программа дисциплины "	'Программирование на яз	зыке С и С++ и JAV	'A"; 020100.68 Xимия;	доцент, к.н. А	ндрианова А.А.	, ассистент
б/с Мухтарова Т.М.					•	

Автор(ы):			
Андрианов	a A.A		
Мухтарова	T.M		
""	201	_ г.	
Рецензент(ы):		
Миссаров М	И.Д		
""	201 _	_ г.	

Программа дисциплины "Программирование на языке C и C++ и JAVA"; 020100.68 Химия; доцент, к.н. Андрианова А.А. , ассистент, б/с Мухтарова Т.М.

Лист согласования

N	ФИО	Согласование
1	Латыпов Р. Х.	
2	Антипин И. С.	
3	Бычкова Т. И.	
4	Чижанова Е. А.	
5	Соколова Е. А.	
6	Тимофеева О. А.	