# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики





подписано электронно-цифровой подписью

# Программа дисциплины

<u>Диагностика микропроцессорных систем</u> M2.ДВ.1

| Направление подготовки: | 011800.68 - | Радиофизика |
|-------------------------|-------------|-------------|
|-------------------------|-------------|-------------|

Профиль подготовки: Информационные процессы и системы

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Таюрская Г.В. Рецензент(ы): Калабанов С.А.

#### СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Шерстюков О. Н. Протокол заседания кафедры No \_\_\_\_ от "\_\_\_\_" \_\_\_\_\_ 201\_\_г Учебно-методическая комиссия Института физики: Протокол заседания УМК No \_\_\_\_ от "\_\_\_\_" \_\_\_\_\_ 201\_\_г

Регистрационный No 644717

Казань 2017

#### Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Таюрская Г.В. Кафедра радиофизики Отделение радиофизики и информационных систем, Galina. Tajrsca@kpfu.ru

#### 1. Цели освоения дисциплины

Целями освоения дисциплины Б3.ДВ6 "Диагностика микропроцессорных систем" яв-ляются изучение современных методов диагностики сложных цифровых схем, в частно-сти, микропроцессорных систем, знакомство с методами компактной диагностики, с осо-бенностями аппаратурной диагностики. Особое внимание уделено вопросам теории сиг-натурного анализа и его практического использования для диагностики микропроцессор-ных систем.

# 2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.ДВ.1 Профессиональный" основной образовательной программы 011800.68 Радиофизика и относится к дисциплинам по выбору. Осваивается на 2 курсе, 3 семестр.

ДисциплинаМ2.В1. "Диагностика микропроцессорных систем" входит в профессио-нальный цикл (блок М2) магистров по направлению 011800- "Радиофизика" и является курсом по выбору. Изучение данной дисциплины базируется на бакалаврской подготовке по направлению 011800.62 - "Радиофизика" по курсам высшей математике из цикла "Ма-тематический и естественнонаучный цикл", по курсам "Б3.Б13. Полупроводниковая электроника", "Б3.ДВ3. Цифровые устройства", "Б3.ДВ2. Микропроцессоры в информа-ционных системах", "Б3.ДВ6. Программируемая логика"

# 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

| Шифр компетенции | Расшифровка<br>приобретаемой компетенции                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------|
|                  | способность применять на практике базовые<br>профессиональные навыки;                                                   |
|                  | способностью к овладению методами защиты интеллектуальной собственности.                                                |
| (общекультурные  | способностью самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии |

В результате освоения дисциплины студент:

- 1. должен знать:
- современный теоретический уровень описания методов диагностики для сложных цифровых систем;
- особенности диагностики микропроцессорных систем и основные требования, предъяв-ляемые к микропроцессорным системам при использовании компактной диагностики;
- принципы построения автоматизированных систем диагностики с использованием ме-тодов компактной диагностики на основе современной элементной базы.
- 2. должен уметь:



применять приобретенные знания для разработки автоматизированных систем ди-агностики с использованием современных методов диагностики сложных цифровых сис-тем.

#### 3. должен владеть:

навыками системного научного анализа проблем, возникающих при создании автомати-зированных систем диагностики сложных цифровых систем

- навыками работы с основными методами в области компактной диагностики и совре-менной научной литературой
- навыками работы с учебной и научной литературой
- 4. должен демонстрировать способность и готовность:
- к решению задач проектирования автоматизированных систем диагностики сложных цифровых устройств на современной элементной базе
- эксплуатировать современную радиоэлектронную аппаратуру для диагностики микропроцессорных систем

#### 4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

# 4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

| N  | Раздел<br>Дисциплины/<br>Модуля                          | Семестр | Неделя<br>семестра | Виды и часы<br>аудиторной работы,<br>их трудоемкость<br>(в часах) |                         |                        | Текущие формы<br>контроля |
|----|----------------------------------------------------------|---------|--------------------|-------------------------------------------------------------------|-------------------------|------------------------|---------------------------|
|    |                                                          |         |                    | Лекции                                                            | Практические<br>занятия | лабораторные<br>работы |                           |
| 1. | Тема 1. Основные<br>определе-ния.                        | 3       | 1                  | 2                                                                 | 0                       | 0                      |                           |
| 2. | Тема 2. Модели неисправностей и задача их обнаружения.   | 3       | 2                  | 2                                                                 | 2                       | 0                      | Отчет                     |
| 3. | Тема 3. Способы генерации тестовых последова-тельностей. | 3       | 3                  | 2                                                                 | 2                       | 0                      |                           |
| 4. | Тема 4. Синдромное тести-рование.                        | 3       | 4                  | 2                                                                 | 2                       | 0                      | Отчет                     |
| 5. | Тема 5.<br>Псевдослучайное<br>тестирование.              | 3       | 5                  | 2                                                                 | 2                       | 0                      |                           |

| N   | Раздел<br>Дисциплины/<br>Модуля                                                    | Семестр | Неделя<br>семестра | Виды и часы<br>аудиторной работы,<br>их трудоемкость<br>(в часах)<br>Поктические Лабораторные |                         | Текущие формы<br>контроля |                                   |
|-----|------------------------------------------------------------------------------------|---------|--------------------|-----------------------------------------------------------------------------------------------|-------------------------|---------------------------|-----------------------------------|
|     |                                                                                    |         |                    | Лекции                                                                                        | практические<br>занятия | лаоораторные<br>работы    |                                   |
| 6.  | Тема 6.<br>Многоканальные<br>генераторы М-<br>последовательностей.                 | 3       | 6                  | 2                                                                                             | 2                       | 0                         | Письменное<br>домашнее<br>задание |
| 7.  | Тема 7. Сущность сигнатур-ного анализа.                                            | 3       | 7                  | 2                                                                                             | 2                       | 0                         | Реферат                           |
| 8.  | Тема 8.<br>Многоканальные<br>сигнатурные<br>анализаторы.                           | 3       | 8                  | 2                                                                                             | 2                       | 0                         | Коллоквиум                        |
| 9.  | Тема 9. Диагностика МПС и микроконтроллеров с помощью сигнатурного анализа.        | 3       | 9                  | 2                                                                                             | 2                       | 0                         |                                   |
| 10. | Тема 10. Логические анализаторы и их использование для тестирования цифровых схем. | 3       | 10                 | 2                                                                                             | 2                       | 0                         | Устный опрос                      |
| 11. | Тема 11. Замкнутые системы тестирования.                                           | 3       | 11                 | 2                                                                                             | 2                       | 0                         | Письменное<br>домашнее<br>задание |
| 12. | Тема 12. Кольцевое тестиро-вание комбинационных интегральных микросхем.            | 3       | 12                 | 2                                                                                             | 2                       | 0                         | Коллоквиум                        |
| 13. | Тема 13.<br>Классификация<br>последовательностных<br>цифровых схем.                | 3       | 13                 | 2                                                                                             | 2                       | 0                         |                                   |
| 14. | Тема 14. Встроенное тестирование.                                                  | 3       | 14                 | 2                                                                                             | 2                       | 0                         | Отчет                             |
| •   | Тема . Итоговая<br>форма контроля                                                  | 3       |                    | 0                                                                                             | 0                       | 0                         | Экзамен                           |
|     | Итого                                                                              |         |                    | 28                                                                                            | 26                      | 0                         |                                   |

## 4.2 Содержание дисциплины

## Тема 1. Основные определе-ния.

## лекционное занятие (2 часа(ов)):

Тестовое диагностирование цифровых систем. Существо тестового контроля. Основные подходы к созданию тестовых программ. Системный и модульный методы контроля. Основные задачи тестового диагностирования

Тема 2. Модели неисправностей и задача их обнаружения.

лекционное занятие (2 часа(ов)):



Мо-делирование неисправностей: параллельное моделирование; дедук-тивное моделирование; конкурентное моделиро-вание. схем. Особенности тестирования после-довательностных. схем

## практическое занятие (2 часа(ов)):

Изучение системы автоматизированного проектирования Quartus II 6.0 Web Edition Full. с целью дальнейшей реализации на программируемых интегральных схемах (ПЛИС) совместимых с Quartus II 6.0.

## Тема 3. Способы генерации тестовых последова-тельностей.

#### лекционное занятие (2 часа(ов)):

Классификация методов сжатия выходных реакций ЦС

#### практическое занятие (2 часа(ов)):

Изучение системы автоматизированного проектирования Quartus II 6.0 Web Edition Full. с целью дальнейшей реализации на программируемых интегральных схемах (ПЛИС) совместимых с Quartus II 6.0.

#### **Тема 4. Синдромное тести-рование.**

#### лекционное занятие (2 часа(ов)):

Синдромное тести-рование.

#### практическое занятие (2 часа(ов)):

Практическая реализация цифровых схем с использованием САПР Quartus II 6.0

## Тема 5. Псевдослучайное тестирование.

#### лекционное занятие (2 часа(ов)):

Использование M- последовательностей при псевдослучайном тестирова-нии. Синтез Одноканальных генераторов M-последовательностей

## практическое занятие (2 часа(ов)):

Синтез одноканальных генераторов М-последовательностей и практическая реализация на программируемой логике.

#### **Тема 6. Многоканальные генераторы М- последовательностей.**

## лекционное занятие (2 часа(ов)):

Алгоритм размножения М- последовательности. Многоканальные генераторы псевдослучайных последовательностей.

#### практическое занятие (2 часа(ов)):

Синтез многоканальных генераторов М-последовательностей и практическая реализация на программируемой логике.

#### Тема 7. Сущность сигнатур-ного анализа.

#### лекционное занятие (2 часа(ов)):

Сигнатурный анализ как алгоритм деления двоичных полиномов. Метод свертки. Достоверность сигнатурного анализа. Методы повышения достоверности сигнатурного анализа

## практическое занятие (2 часа(ов)):

Практическая реализация сигнатурных анализаторов методами свертки и деления полинома на полином.

#### Тема 8. Многоканальные сигнатурные анализаторы.

#### лекционное занятие (2 часа(ов)):

Алгоритмы построения многоканальных сигнатурные анализато-ров и оценка их эффективности. Особенности практического примене-ния сигнатурного анали-за. Области применения сигнатурного анализа. Применение сигнатурного анализа для поиска неисправностей

# практическое занятие (2 часа(ов)):

Синтез одноканальных сигнатурных анализаторов и практическая реализация на программируемой логике.



# Тема 9. Диагностика МПС и микроконтроллеров с помощью сигнатурного анализа. *лекционное занятие (2 часа(ов)):*

Основные тре-бования, предъявляе-мые при диагностике к микропроцессорным системам. Сигнатурные анализаторы. Тестиро-вание в режиме свобод-ного счета с использова-нием СА. Тест-программы для диагностики блока памяти микропроцессорных систем

## практическое занятие (2 часа(ов)):

Практическое применение сигнатурного анализатора для диагностики МПС.

# **Тема 10.** Логические анализаторы и их использование для тестирования цифровых схем.

#### лекционное занятие (2 часа(ов)):

. Блок-схема и технические характе-ристики ЛА. Режимы записи. Классификация ЛА. Режимы запуска. Режимы индикации ЛА. Практическое использо-вание ЛА и осциллогра-фов смешанных сигна-лов для диагностики микропроцессорных систем.

## практическое занятие (2 часа(ов)):

Практическое применение логического анализатора для диагностики для диагностики цифровых систем.

#### Тема 11. Замкнутые системы тестирования.

#### лекционное занятие (2 часа(ов)):

Линейные системы кольцевого тестирования. Особенности построения систем кольцевого тестирова-ния и применения для диагностики сложных цифровых систем.

## практическое занятие (2 часа(ов)):

Практическая реализация кольцевого тестирования комбинационных схем с использованием программируемой логики.

#### Тема 12. Кольцевое тестиро-вание комбинационных интегральных микросхем.

#### лекционное занятие (2 часа(ов)):

Алглритм построенния системы кольцевого тестирования для комбинационных схем. Достоверность кольцевого тестирования.

#### практическое занятие (2 часа(ов)):

Практическая реализация кольцевого тестирования комбинационных схем с использованием программируемой логики.

#### Тема 13. Классификация последовательностных цифровых схем.

#### лекционное занятие (2 часа(ов)):

Применение кольцевого тестирования для последовательностных схем. Кольцевое дублирование.

#### практическое занятие (2 часа(ов)):

Практическая реализация кольцевого тестирования последовательностных схем с использованием программируемой логики.

#### Тема 14. Встроенное тестирование.

#### лекционное занятие (2 часа(ов)):

Особенности построения автоматизированных систем диагностики с использованием мето-дов компактной диагно-стики на основе современной элементной ба-зы.

#### практическое занятие (2 часа(ов)):

Практическая реализация кольцевого дублирования для последовательностных схем с использованием программируемой логики.

#### 4.3 Структура и содержание самостоятельной работы дисциплины (модуля)



| N   | Раздел<br>Дисциплины                                                               | Семестр | Неделя<br>семестра | Виды<br>самостоятельной<br>работы<br>студентов | Трудоемкость<br>(в часах) | Формы контроля<br>самостоятельной<br>работы |
|-----|------------------------------------------------------------------------------------|---------|--------------------|------------------------------------------------|---------------------------|---------------------------------------------|
| 2.  | Тема 2. Модели неисправностей и задача их обнаружения.                             | 3       | 2                  | подготовка к<br>отчету                         | 2                         | отчет                                       |
| 4.  | Тема 4. Синдромное тести-рование.                                                  | 3       | 4                  | подготовка к<br>отчету                         | 2                         | отчет                                       |
| 6.  | Тема 6.<br>Многоканальные<br>генераторы М-<br>последовательностей.                 | 3       | 6                  | подготовка<br>домашнего<br>задания             | 2                         | домашнее<br>задание                         |
| 7.  | Тема 7. Сущность сигнатур-ного анализа.                                            | 3       | 7                  | подготовка к<br>реферату                       | 2                         | реферат                                     |
| 8.  | Тема 8.<br>Многоканальные<br>сигнатурные<br>анализаторы.                           | 3       | 8                  | подготовка к<br>коллоквиуму                    | 2                         | коллоквиум                                  |
| 10. | Тема 10. Логические анализаторы и их использование для тестирования цифровых схем. | 3       | 1 111              | подготовка к<br>устному опросу                 | 2                         | устный опрос                                |
| 11. | Тема 11. Замкнутые системы тестирования.                                           | 3       | 11                 | подготовка<br>домашнего<br>задания             | 2                         | домашнее<br>задание                         |
| 12. | Тема 12. Кольцевое тестиро-вание комбинационных интегральных микросхем.            | 3       | 12                 | подготовка к<br>коллоквиуму                    | 2                         | коллоквиум                                  |
| 14. | Тема 14. Встроенное тестирование.                                                  | 3       | 14                 | подготовка к<br>отчету                         | 2                         | отчет                                       |
|     | Итого                                                                              |         |                    |                                                | 18                        |                                             |

### 5. Образовательные технологии, включая интерактивные формы обучения

Используются следующие формы учебной работы: лекции, лабораторные работы, само-стоятельная работа студента (выполнение индивидуальных домашних заданий), консуль-тации. Материалы курса лекций, список контрольных вопросов, задания для лаборатор-ных работ и самостоятельной работы имеются в электронном варианте. Консультации проводятся в обозначенное в расписании время и в режиме "online".

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основные определе-ния.

**Тема 2. Модели неисправностей и задача их обнаружения.** 

отчет, примерные вопросы:

. Тема отчета: Основные подходы к созданию тестовых программ. Системный и модульный методы контроля.

### **Тема 3. Способы генерации тестовых последова-тельностей.**

#### **Тема 4. Синдромное тести-рование.**

отчет, примерные вопросы:

Тема отчета: Моделирование неисправностей: параллельное моделирование; дедук-тивное моделирование; конкурентное моделирование схем. Спектральный метод оценки выходных реакций цифровых схем. Корреляционный метод.

#### Тема 5. Псевдослучайное тестирование.

#### **Тема 6. Многоканальные генераторы М- последовательностей.**

домашнее задание, примерные вопросы:

Реализовать синтез многоканального генератора М-последовательностей ( задан порождающий полином и число каналов).

#### **Тема 7. Сущность сигнатур-ного анализа.**

реферат, примерные темы:

Сущность сигнатурного анализа. Сигнатурный анализ как алгоритм деления двоичных полиномов. Достоверность сигнатурного анализа. Методы повышения достоверности сигнатурного анализа

#### Тема 8. Многоканальные сигнатурные анализаторы.

коллоквиум, примерные вопросы:

. Вопросы для коллоквиума:1. Алгоритм построения многоканальных сигнатурных анализаторов. 2. Применение многоканальных сигнатурных анализаторов для поиска неисправностей в анализируемых цифровых схемах.

#### Тема 9. Диагностика МПС и микроконтроллеров с помощью сигнатурного анализа.

# Тема 10. Логические анализаторы и их использование для тестирования цифровых схем.

устный опрос, примерные вопросы:

Основные вопросы: 1. блок-схема и технические характе-ристики ЛА; 2. Классификация ЛА; 3. основные режимы работы ЛА.

#### Тема 11. Замкнутые системы тестирования.

домашнее задание, примерные вопросы:

Изучить и реализовать алгоритм построения системы кольцевого тестирования для заданной комбинационной интегральной схемы.

#### **Тема 12. Кольцевое тестиро-вание комбинационных интегральных микросхем.**

коллоквиум, примерные вопросы:

Вопросы коллоквиума: 1)Линейные системы кольцевого тестирования. 2) Особенности построения систем кольцевого тестирования и применения для диагностики сложных цифровых систем. 3) Достоверность кольцевого тестирования.

## Тема 13. Классификация последовательностных цифровых схем.

#### Тема 14. Встроенное тестирование.

отчет, примерные вопросы:

Представить отчет по практической реализации замкнутых систем диагностики с использованием программируемой логики.

#### Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Билеты. 1. Псевдослучайное тестирование. Синтез генераторов М-последовательностей.

2. Алгоритм построения многоканальных генераторов М-последовательности.



- 3. Сущность сигнатурного анализа. Сигнатурный анализ как алгоритм деления двоичных полиномов. Достоверность сигнатурного анализа. Методы повышения достоверности сигнатурного анализа.
- 4. Многоканальный сигнатурный анализатор и оценка его эффективности. Особенности практического применения сигнатурного анализа. Применение сигнатурного анализа для поиска неисправностей.
- 5. Диагностика МПС с помощью сигнатурного анализа. Основные требования, предъяв-ляемые к микропроцессорным системам.
- 6. Сигнатурные анализаторы. Тестирование в режиме свободного счета с использованием СА. Тест-циклы СА.
- 7. Логические анализаторы и их использование для тестирования цифровых схем. Блок-схема и технические характеристики ЛА.

#### 7.1. Основная литература:

1. Микушин, А. В. Цифровые устройства и микропроцессоры: учеб. пособие / А. В. Микушин, А. М. Сажнев, В. И. Сединин. ? СПб.: БХВ-Петербург, 2010. ? 832 с.: ил. ? (Учебная литература для вузов). - ISBN 978-5-9775-0417-1. http://znanium.com/bookread.php?book=350706 ЭБС

Знаниум

2. Сергиенко А. Б. Цифровая обработка сигналов: учеб. пособие. ? 3-е изд. ? СПб.: БХВ-Петербург, 2011. ? 768 с. ? (Учебная литература для вузов). - ISBN 978-5-9775-0606-9. http://znanium.com/bookread.php?book=354905
ЭБС

Знаниум

3. Сафонов М.Н., Ситников Ю.К., Таюрская Г.В. Метод построения многоканальных сигнатурных анализаторовю Контроль. Диагностика: Теория, Методы, Приборы, Технологии ◆5 2010г. - 26 - 29с. (1экз.)

#### 7.2. Дополнительная литература:

- 1. Ярмолик В.Н. Контроль и диагностика цифровых узлов ЭВМ МН: Наука и техника, 1988 -240с (2экз.)
- 2. Ярмолик В.Н., Демиденко С.Н. Генерирование и применение псевдослучайных сигналов в системах испытания и контроля Минск: Наука и Техника, 1998 200с (2 экз)

#### 7.3. Интернет-ресурсы:

Встроенный контроль и диагностика цифровых устройств. Методы повышения контролепригодности цифровых устройств</a> - <a href=http://revolution.allbest.ru/radio/00048461.html>

Кирьянов К.Г. "Сигнатурный анализ". Книга, посвященная сигнатурному анализу. - www.unn.ru/rus/books/met files/sign1.doc

Сайт компании Hewlett-Packard, которая долгое время являлась лидером в области разработок сигнатурных анализаторов. - ? www.hp.com

Сайт, посвященный современным технологиям тестирования и тестовому оборудованию. На сайте содержатся публикации по этим темам - www.sovtest.ru

Статья расположена на федеральном портале "Инженерное образование". В статье предлагается новый подход к решению задачи тестового диагностирования сложных систем. Приведен разработанный алгоритм диагностирования системы при проведении тестовых испытаний. - banana.stack.net:16000/db/msg/22361.html



# 8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Диагностика микропроцессорных систем" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "КнигаФонд", доступ к которой предоставлен студентам. Электронно-библиотечная система "КнигаФонд" реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. КнигаФонд обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям новых ФГОС ВПО.

Лаборатория "Диагностика МПС".

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011800.68 "Радиофизика" и магистерской программе Информационные процессы и системы .

| Автор(ы) | :      |  |
|----------|--------|--|
| Таюрска  | я Г.В  |  |
| "        | 201 г. |  |
| Рецензе  | нт(ы): |  |
| Калабан  | ов С.А |  |
| ""       | 201 г. |  |