МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

\/7			\IZ	_		_
УI	ΙBΙ	E۲	Ж.	ш	AI	Ю

Программа дисциплины

Физика наноструктур и нанотехнологии М2.В.2.5

Направление подготовки: 050100.68 - Педагогическое образование
Профиль подготовки: Образование в области физики
Квалификация выпускника: <u>магистр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
Ситдиков А.С.
Рецензент(ы):
Сафаров Р.Х.
СОГЛАСОВАНО:
Заведующий(ая) кафедрой:
Протокол заседания кафедры No от ""201г
Учебно-методическая комиссия Института физики:
Протокол заседания УМК No от "" 201г
Регистрационный No
Казань
2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) Ситдиков А.С.

1. Цели освоения дисциплины

Целью преподавания дисциплины "Физика наноструктур и нанотехнологии" - первоначальное ознакомление магистров целями, задачами и методами физики наноразмерных систем, а также формирование у них способность использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности, расширять и углублять свое научное мировоззрение.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.B.2 Профессиональный" основной образовательной программы 050100.68 Педагогическое образование и относится к вариативной части. Осваивается на 2 курсе, 3 семестр.

Дисциплина "Физика наноструктур и нанотехнологии" является одной из основных в блоке дисциплин профильной подготовки магистров. Она базируется на комплексе дисциплин: "физика", "химия", "биология", "материаловедение" и др. и фактически является междисциплинарной наукой.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-4 (общекультурные компетенции)	Знать: общие понятия о ресурсно-информационных базах для решения профессиональных задач, связанных как с научными исследованиями в области физики, так и в области методики преподавания физики Уметь: формировать ресурсно-информационные базы для решения профессиональных задач Владеть: соответствующим понятийным, физико-математическим аппаратом
ОК-5 (общекультурные компетенции)	Знать: основные концепции, связанные с информационными технологиями в области физико-математического образования Уметь: использовать информационные технологии, а также новые знания и умения в областях, не связанных со сферой физических исследований и физико-математического образования Владеть: способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения
ПК-1 (профессиональные компетенции)	Знать: современные методики и технологии организации и реализации образовательного процесса на различных образовательных ступенях в образовательных учреждениях Уметь: практически применять методы и технологии современного физико-математического образования Владеть: навыками тестирования, апробации и использования методов и технологий физико-математического образования в различных образовательных учреждениях

Шифр компетенции	Расшифровка приобретаемой компетенции				
ПК-16 (профессиональные компетенции)	Знать: основные положения и содержание современных образовательных технологий и методик обучения Уметь: проектировать новое учебное содержание, технологии и конкретные методики обучения Владеть: методами проектирования современных учебных программ и конкретных методик обучения				
ПК-2 (профессиональные компетенции)	Знать: общие понятия, алгоритмы и методы диагностики и оценивания качества образовательного процесса Уметь: осуществлять мониторинг качества образовательного процесса Владеть: методами анкетирования, тестирования, оценки знаний, умений и навыков студентов				
ПК-4 (профессиональные компетенции)	Знать: методы, концепции и подходы организации исследовательской работы обучающихся Уметь: ставить актуальные исследовательские задачи и выполнять соответствующий контроль Владеть: навыками руководства исследовательской работой обучающихся				
ПК-8 (профессиональные компетенции)	Знать: подходы в разработке и реализации образовательных моделей, методик, технологий и приемов к анализу результатов процесса Уметь: разрабатывать, использовать и предлагать оригинальные методики и подходы в обучении Владеть: методами формирования и реализации образовательных технологий				

В результате освоения дисциплины студент:

1. должен знать:

- Основные представления об углеродных наноструктурах. Фуллерены, нанотрубки, графен, их физические свойства. Хиральность углеродных нанотрубок. Электронная структура, электронный спектр, проводимость углеродных нанотрубок. Дефекты нанотрубок. Методы получения и разделения полупроводниковых и металлических нанотрубок, структур на их основе.
- Роль фундаментальных закономерностей, определяющих физико-химические особенности формирования микро- и наноразмерных структур, в развитии технологии и производстве. Экономические и технологические основы уменьшения размеров элементов электроники.

2. должен уметь:

- объяснять сущность физических явлений и процессов в твердых телах, производить анализ и делать количественные оценки параметров физических процессов;
- определить структуру простейших решеток по данным рентгеноструктурного анализа;
- выполнить расчет колебаний атомной цепочки;
- произвести расчеты кинетических характеристик твердых тел в приближении свободного электронного газа;

3. должен владеть:

Математическими знаниями и умело их использовать при выполнении курсовых, дипломных работ и в дальнейшей своей профессиональной деятельности. Понимать проблему взаимосвязи эмпирического и теоретического знания в физике.

Решать задачи по физике наноструктур и нанотехнологии

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Установочная лекция. Введение.	3	1	2	0	0	письменная работа
2.	Тема 2. Углеродные наноструктуры.	3	2,3	0	4	0	письменная работа
3.	Тема 3. Перспективы графена.	3	4-6	0	6	0	письменная работа
4.	Тема 4. Физические ограничения на уменьшение размеров и появление новых свойств элементов при уменьшении их размеров в одном или нескольких пространственных направлениях.	3	7-9	2	0	0	устный опрос
5.	Тема 5. Квантовые точки и нити.	3	10-12	0	6	0	письменная работа
	Тема 6. Перспективы развития нанотехнологий.	3	13,14	2	0	0	устный опрос
7.	Тема 7. Зачет.	3	15	0	4	0	отчет
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			6	20	0	

4.2 Содержание дисциплины

Тема 1. Установочная лекция. Введение.

лекционное занятие (2 часа(ов)):

Тема 2. Углеродные наноструктуры.

практическое занятие (4 часа(ов)):

Тема 3. Перспективы графена.

практическое занятие (6 часа(ов)):

Тема 4. Физические ограничения на уменьшение размеров и появление новых свойств элементов при уменьшении их размеров в одном или нескольких пространственных направлениях.

лекционное занятие (2 часа(ов)):

Тема 5. Квантовые точки и нити.

практическое занятие (6 часа(ов)):

Тема 6. Перспективы развития нанотехнологий.

лекционное занятие (2 часа(ов)):

Тема 7. Зачет.

практическое занятие (4 часа(ов)):

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Установочная лекция. Введение.	3	1	подготовка к письменной работе	6	письменная работа
2.	Тема 2. Углеродные наноструктуры.	3	2,3	подготовка к письменной работе	6	письменная работа
3.	Тема 3. Перспективы графена.	3	4-6	подготовка к письменной работе	8	письменная работа
4.	Тема 4. Физические ограничения на уменьшение размеров и появление новых свойств элементов при уменьшении их размеров в одном или нескольких пространственных направлениях.	3	ı /_u	подготовка к устному опросу	6	устный опрос
5.	Тема 5. Квантовые точки и нити.	3		подготовка к письменной работе	8	письменная работа
6.	Тема 6. Перспективы развития нанотехнологий.	3	1 13 14	подготовка к устному опросу	6	устный опрос
7.	Тема 7. Зачет.	3	15	подготовка к отчету	6	отчет
	Итого				46	

5. Образовательные технологии, включая интерактивные формы обучения

Применяемые образовательные методы и формы проведения занятий:

Проведение лекций в виде компьютерных презентаций и обсуждение материала по теме.

Проведение контрольных работ и выполнение заданий по курсу.

Лекционные и практические занятия построены с применением компьютерной презентации, решения задач с привлечением данных реальных экспериментов. В часы практических занятий проводятся контрольные работы и опросы, что дает возможность оценить усваиваемость материала студентами и при необходимости подробно остановиться на проблемных вопросах.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Установочная лекция. Введение.

письменная работа, примерные вопросы:

Тема 2. Углеродные наноструктуры.

письменная работа, примерные вопросы:

Тема 3. Перспективы графена.

письменная работа, примерные вопросы:

Тема 4. Физические ограничения на уменьшение размеров и появление новых свойств элементов при уменьшении их размеров в одном или нескольких пространственных направлениях.

устный опрос, примерные вопросы:

Тема 5. Квантовые точки и нити.

письменная работа, примерные вопросы:

Тема 6. Перспективы развития нанотехнологий.

устный опрос, примерные вопросы:

Тема 7. Зачет.

отчет, примерные вопросы:

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

примерные вопросы к зачету:

- 1.Принципы классификации нанообъектов и наноструктур. Основные классы наноматериалов и области их использования.
- 2. Размерные эффекы (РЭ) в наноструктурах. Понятие о скейлинге, автомодельности и границах применимости теории/модели.
- 3.Основные разновидности РЭ в наномасштабных структурах.
- 4. Основные группы физических причин специфического поведения нанообъектов.
- 5. Роль свободных и внутренних поверхностей в физико-химии наноструктур.
- 6.Размерное квантование. Квантовые нити и квантовые точки. Квантовые точки с оболочками.
- 7. Физические принципы и основные группы методов исследования наноструктур. Упругое и неупругое рассеяние.
- 8. Принципы и методы измерения размеров наночастиц.

Виды самостоятельной работы студентов:

- 1) выполнение практических заданий по разделам курса;
- 2) выполнение контрольных работ;

3) подготовка к зачету.

7.1. Основная литература:

- 1.Ансельм А.И. "Основы статистической физики и термодинамики". М., 1973.
- 2. Арцимович Л.А. "Управляемые термоядерные реакции". М., 1963.
- 3. Арцимович Л.А. "Что каждый человек должен знать о плазме". М., 1976.
- 4. Жирифалько Л. "Проблемы современной физики конденсированного состояния". М., 1975.
- 5.Займан Дж. "Принципы теории твердого тела". М., 1974.
- 6. Иоффе А.Ф. "Физика полупроводников". М., 1962.
- 7.Киттель Ч. "Введение в физику твердого тела". М., 1974.
- 8.Ландау Л.Д., Лифшиц Е.М. "Статистическая физика". М., 1964.
- 9.Лендьел Б. "Лазеры". М., 1964.
- 10.Спитцер Л. "Физика полностью ионизированного газа". М., 1965.
- 11. Шалимова К.В. "Физика полупроводников". М., 1971.

7.2. Дополнительная литература:

- 1.Свирский М.С. "Электронная теория вещества". М., 1980.
- 2.Епифанов Г.И. "Проблемы современной физики конденсированного состояния". М., 1977.
- 3.Коланов М.И., Цукерник В.М. "Природа магнетизма". Библ. "Квант", вып. 26, М., 1983.
- 4. Арцимович Л.А. "Элементарная физика плазмы". М., 1963.
- 5.Кресин В.З. "Сверхпроводимость и сверхтекучесть". М., 1963.
- 6.Эдельман В.С. "Вблизи абсолютного нуля" Библ. "Квант", вып. 16, М., 1982.
- 7.Околотин В. "Сверхзадача для сверхпроводников". М., 1983.
- 8. Милантьев В.П., Темко С.В. "Физика плазмы". Кн. Для внеклассного чтения. М., 1983.
- 9. Ораевский В.Н. "Плазма на земле и в космосе". Киев. 1980.
- 10.Каганов М.И. "Природа сопротивления металлов". М., 1982.

7.3. Интернет-ресурсы:

8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Освоение дисциплины "Физика наноструктур и нанотехнологии" предполагает использование следующего материально-технического обеспечения:

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 050100.68 "Педагогическое образование" и магистерской программе Образование в области физики .

Автор(ы):			
Ситдиков А.С.			
" "	201	Г.	
Рецензент(ы):			
Сафаров Р.Х.			
оафаров г .х. ₋			
"	_ 201 _	г.	