МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

> "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Твердотельная электроника Б1.В.ДВ.3

Направление подготовки: 10.03.01 - Информационная безопасность
Профиль подготовки: Безопасность автоматизированных систем
Квалификация выпускника: бакалавр

Форма обучения: очное

Язык обучения: русский

Автор(ы): Таюрская Г.В. Рецензент(ы): Шерстюков О.Н.

Протокол заседания кафедры No от "" 201	
Учебно-методическая комиссия Института физики:	
Протокол заседания УМК No от "" 201г	

Регистрационный № 6123018

Казань 2018

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Таюрская Г.В. Кафедра радиофизики Отделение радиофизики и информационных систем, Galina. Tajrsca@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины ЕН.В2 "Твердотельная электроника" являются знаком-ство с физическими принципами работы современных полупроводниковых приборов, действие которых основано на свойствах контакта металл-полупроводник, р-п перехода, гетероперехода, структуры металл-диэлектрик-полупроводник; выработке умения математически описывать физические процессы, лежащие в основе действия полупроводнико-вых приборов различного назначения и на основе полученных соотношений рассчитывать их параметры. В курсе излагаются физика полупроводников, физика электрических пере-ходов, рассматриваются физические процессы, математические модели, параметры и ха-рактеристики полупроводниковых диодов, биполярных и полевых транзисторов, элементы интегральных схем на биполярных и полевых транзисторах,.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.З Дисциплины (модули)" основной образовательной программы 10.03.01 Информационная безопасность и относится к дисциплинам по выбору. Осваивается на 3 курсе, 6 семестр.

Дисциплина ЕН.В2 "Твердотельная электроника" входит в профессиональный цикл (блок ЕН) бакалавров по направлению и является обязательной для изучения.

Изучение данной дисциплины базируется на подготовке по физике и математике в рамках Государственного стандарта общего образования, дисциплин подготовки бакалав-ров по направлению 090900.62 - "Информационная безопасность": ЕН.Ф.7 "математика (мат анализ)", ЕН.Р.1 "физика", ЕН.Ф.5 "Теория комплексного переменного", ДН(М).Р.6 "основы радиоэлектроники".

Дисциплина служит основой для последующего изучения дисциплин курса ДН(М). В2 "функциональная электроника", ДН(М). В2 "физическая электроника"", ДН(М).В6 "импульсная и цифровая схемотехника".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
OK-1	способность использовать в познавательной и
(общекультурные	профессиональной деятельности базовые знания в области
компетенции)	математики и естественных наук;
ПК-1! (профессиональные компетенции)	способность использовать базовые теоретические знания для решения профессиональных задач;
ПК-2 (профессиональные компетенции)	способность применять на практике базовые профессиональные навыки
ПК-3 (профессиональные компетенции)	способностью эксплуатировать современную физическую аппаратуру и оборудование;
ПК-5 (профессиональные компетенции)	способностью применять на практике базовые общепрофессиональные знания теории и методов физических исследований (в соответствии с профилем подготовки)

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-6 (профессиональные компетенции)	- способностью пользоваться современными методами обработки, анализа и синтеза физической информации (в соответствии с профилем подготовки
ПК-8 (профессиональные компетенции)	способностью понимать и использовать на практике теоретические основы организации и планирования физических исследований

В результате освоения дисциплины студент:

1. должен знать:

Дисциплина ЕН.В2 "Твердотельная электроника" входит в профессиональный цикл (блок ЕН) бакалавров по направлению и является обязательной для изучения.

Изучение данной дисциплины базируется на подготовке по физике и математике в рамках Государственного стандарта общего образования, дисциплин подготовки бакалавров по направлению 090900.62 - "Информационная безопасность": ЕН.Ф.7 "математика (мат анализ)", ЕН.Р.1 "физика", ЕН.Ф.5 "Теория комплексного переменного", ДН(М).Р.6 "основы радиоэлектроники".

Дисциплина служит основой для последующего изучения дисциплин курса ДН(М). В2 "функциональная электроника", ДН(М). В2 "физическая электроника", ДН(М).В6 "импульсная и цифровая схемотехника".

2. должен уметь:

- математически описывать физические процессы, происходящие в электрических переходах;
- строить математические модели полупроводниковых приборов различного назначения, на основе которых рассчитывать их параметры и строить эквивалентные схемы для различных режимов и частотных диапазонов их работы;
- на основе анализа особенностей полупроводниковых приборов правильно выбирать элементную базу для построения радиотехнических устройств.

3. должен владеть:

- методами анализа и синтеза радиоэлектронных устройств с учетом особенностей работы полупроводниковых приборов в различных режимах и частотных диапазонах их применения.
- навыками работы с учебной и научной литературой.
- 4. должен демонстрировать способность и готовность:
- к решению задач анализа и синтеза радиоэлектронных устройств на современной элементной базе
- эксплуатировать современную радиоэлектронную аппаратуру и оборудование
- работать с современными образовательными и информационными технологиями.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 6 зачетных(ые) единиц(ы) 216 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 6 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.); 54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Виды и часы аудиторной работы, их трудоемкость семестра (в часах)		семестра	Текущие формы контроля	
	Модуля			Лекции	Практические занятия	, Лабораторные работы	
1.	Тема 1. Введение в физику полупроводников.	6	1	2	2	0	Письменное домашнее задание
2.	Тема 2. Рекомбинация носителей.	6	2	2	2	0	Письменное домашнее задание
3.	Тема 3. Законы движения носителей в полупроводниках.	6	3	2	2	0	Письменное домашнее задание
4.	Тема 4. Электрические переходы.	6	4	2	4	0	Письменное домашнее задание Тестирование
5.	Тема 5. Анализ p-n перехода в неравновесном состоянии.	6	5	2	4	0	Коллоквиум Письменное домашнее задание
6.	Тема 6. Полупроводниковые диоды.	6	6	2	2	0	Письменное домашнее задание
7.	Тема 7. Обратная характеристика реального диода.	6	7	2	2	0	Контрольная работа Письменное домашнее задание
8.	Тема 8. Барьерная и диффузионная емкости диода.	6	8	2	2	0	Письменное домашнее задание
9.	Тема 9. Биполярный транзистор.	6	9	2	4	0	Письменное домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, ость)	Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
10.	Тема 10. Статические характеристики транзистора ОБ.	6	10	2	4	0	Коллоквиум Письменное домашнее задание
11.	Тема 11. Малосигнальная эквивалентная схема и статические параметры транзистора ОБ.	6	11	2	2	0	Тестирование Письменное домашнее задание
12.	Тема 12. Динамические параметры транзистора ОБ.	6	12	2	4	0	Письменное домашнее задание
13.	Тема 13. Характеристики и параметры транзистора при включении с общим эмиттером.	6	13	2	4	0	Контрольная работа Письменное домашнее задание
14.	Тема 14. Составные транзисторы. Разновидности дискретных транзисторов.	6	14	2	2	0	Письменное домашнее задание
15.	Тема 15. Полевые транзисторы.	6	15	2	4	0	Тестирование Письменное домашнее задание
16.	Тема 16. МДП-транзисторы.	6	16	2	4	0	Письменное домашнее задание
17.	Тема 17. Транзисторы полупроводниковых интегральных схем.	6	17	2	4	0	Контрольная работа Письменное домашнее задание
18.	Тема 18. Элементы интегральных схем на МОП-транзисторах.	6	18	2	2	0	Коллоквиум
	Тема . Итоговая форма контроля	6		0	0	0	Экзамен
	Итого			36	54	0	

4.2 Содержание дисциплины

Тема 1. Введение в физику полупроводников.

лекционное занятие (2 часа(ов)):

Энергетические уровни твердого тела. Зонная структура полупроводников и типы проводимости. Законы распределения носителей в зонах полупроводника. Концентрация носителей в собственном и примесном полупроводниках. Подвижность носителей. Электропроводность. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 2. Рекомбинация носителей.

лекционное занятие (2 часа(ов)):

Механизм рекомбинации. Непосредственная рекомбинация. Равновесное и неравновесное состояние. Время жизни. Рекомбинация на примесных центрах. Поверхностная рекомбинация.

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 3. Законы движения носителей в полупроводниках.

лекционное занятие (2 часа(ов)):

Кинетика носителей.Биполярная диффузия. Монополярная диффузия. Комбинированное движение. Эффект поля.

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 4. Электрические переходы.

лекционное занятие (2 часа(ов)):

Электрические переходы. Разновидности электрических переходов. Классификация p-n переходов. Структура p-n перехода. Анализ перехода в равновесном состоянии. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 5. Анализ р-п перехода в неравновесном состоянии.

лекционное занятие (2 часа(ов)):

Анализ p-n перехода в неравновесном состоянии. Контакт металл-полупроводник. Гетеропереходы. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 6. Полупроводниковые диоды.

лекционное занятие (2 часа(ов)):

Полупроводниковые диоды. Анализ идеализированного диода. Решение диффузионного уравнения. Вольтамперная характеристика идеализированного диода. Характеристические сопротивления. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 7. Обратная характеристика реального диода.

лекционное занятие (2 часа(ов)):

Обратная характеристика реального диода. Виды пробоя перехода. Прямая характеристика реального диода. Работа диода при высоком уровне инжекции. Эквивалентные схемы диода при обратном и прямом включениях по постоянному току. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 8. Барьерная и диффузионная емкости диода.

лекционное занятие (2 часа(ов)):

Барьерная и диффузионная емкости диода. Эквивалентные схемы диода по переменному току. Типы диодов: силовые диоды, стабилитроны, импульсные диоды, диоды Шоттки, варикапы. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 9. Биполярный транзистор.

лекционное занятие (2 часа(ов)):

Биполярный транзистор. Принцип работы. Способы включения транзистора. Распределение носителей в базе. Эффект модуляции толщины базы и его следствия. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 10. Статические характеристики транзистора ОБ.

лекционное занятие (2 часа(ов)):

Статические характеристики транзистора ОБ. Модель Молла- Эберса. Семейства выходных и входных характеристик транзистора. Эквивалентная схема транзистора для постоянных составляющих. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 11. Малосигнальная эквивалентная схема и статические параметры транзистора ОБ.

лекционное занятие (2 часа(ов)):

Динамические параметры транзистора ОБ. Барьерные и диффузионные емкости транзистора. Коэффициенты инжекции и переноса. Коэффициент передачи тока. Предельная и граничная частота. Максимальная частота генерации. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 12. Динамические параметры транзистора ОБ.

лекционное занятие (2 часа(ов)):

Динамические параметры транзистора ОБ. Барьерные и диффузионные емкости транзистора. Коэффициенты инжекции и переноса. Коэффициент передачи тока. Предельная и граничная частота. Максимальная частота генерации. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 13. Характеристики и параметры транзистора при включении с общим эмиттером. *лекционное занятие (2 часа(ов)):*

Характеристики и параметры транзистора при включении с общим эмиттером. Эквивалентная схема ОЭ для постоянных составляющих. Статические и динамические параметры транзистора. Эквивалентная схема для переменных составляющих. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 14. Составные транзисторы. Разновидности дискретных транзисторов.

лекционное занятие (2 часа(ов)):

Составные транзисторы. Транзистор, включенный по схеме с общим коллектором. Дрейфовые транзисторы. Разновидности дискретных транзисторов. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

Тема 15. Полевые транзисторы.

лекционное занятие (2 часа(ов)):

Полевые транзисторы. Классификация полевых транзисторов. Полевой транзистор с управляющим p-n переходом. Принцип действия. Статические характеристики и параметры полевых транзисторов. Эквивалентная схема. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 16. МДП-транзисторы.

лекционное занятие (2 часа(ов)):

МДП-транзисторы. Статические характеристики и параметры Эквивалентная схема МДП-транзистора. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 17. Транзисторы полупроводниковых интегральных схем.

лекционное занятие (2 часа(ов)):

Транзисторы полупроводниковых интегральных схем. Интегральные n-p-n транзисторы: многоэмиттерные и многоколлекторные транзисторы; супербета транзисторы: транзисторы с барьером Шоттки. Особенности цифровых ИС на биполярных транзисторах. (2 час.)

практическое занятие (4 часа(ов)):

Решение задач. (2 час.)

Тема 18. Элементы интегральных схем на МОП-транзисторах.

лекционное занятие (2 часа(ов)):

Элементы интегральных схем на МОП-транзисторах: интегральные схемы на n-MOП-транзисторах. КМОП- структуры. Статические и динамические запоминающие устройства n-MOП-транзисторах. Энергонезависимые постоянные запоминающие устройства. (2 час.)

практическое занятие (2 часа(ов)):

Решение задач. (2 час.)

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Введение в физику полупроводников.	6	1	подготовка домашнего задания	4	письменное домашнее задание
2.	Тема 2. Рекомбинация носителей.	6	2	подготовка домашнего задания	4	письменное домашнее задание
3.	Тема 3. Законы движения носителей в полупроводниках.	6	3	подготовка домашнего задания	4	письменное домашнее задание
4.	Тема 4. Электрические переходы.	6	4	подготовка домашнего задания	2	письменное домашнее задание
				подготовка к тестированию	2	тестирование

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы	
	Тема 5. Анализ p-n перехода в неравновесном состоянии.			подготовка домашнего задания	1	письменное домашнее задание	
5.		6	5	подготовка домашнего задания	2	домашнее задание	
				подготовка к коллоквиуму	1	коллоквиум	
6.	Тема 6. Полупроводниковые диоды.	6	6	подготовка домашнего задания	5	домашнее задание	
				подготовка домашнего задания	2	письменное домашнее задание	
7.	Тема 7. Обратная характеристика реального диода.	6	7	подготовка домашнего задания	1	домашнее задание	
				подготовка к контрольной работе	1	контрольная работа	
Ω	Тема 8. Барьерная и диффузионная емкости диода.	6	8	подготовка домашнего задания	1	письменное домашнее задание	
0.		0	0	подготовка домашнего задания	4	домашнее задание	
9.	Тема 9. Биполярный транзистор.	6		подготовка домашнего задания	2	письменное домашнее задание	
9.		0		подготовка домашнего задания	2	домашнее задание	
	Tours 10. Cooperation			подготовка домашнего задания	1	письменное домашнее задание	
10.	Тема 10. Статические характеристики транзистора ОБ.	6	10	10	подготовка домашнего задания	2	домашнее задание
				подготовка к коллоквиуму	1	коллоквиум	
	Тема 11. Малосигнальная		11	подготовка домашнего задания	1	письменное домашнее задание	
11	эквивалентная схема и статические параметры транзистора ОБ.	6		подготовка домашнего задания	2	домашнее задание	
				подготовка к тестированию	1	тестирование	

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
12	Тема 12. Динамические параметры транзистора ОБ.	6	12	подготовка домашнего задания	2	письменное домашнее задание
-			12	подготовка домашнего задания	2	домашнее задание
	Тема 13.			подготовка домашнего задания	1	письменное домашнее задание
13.	Характеристики и параметры транзистора при включении с общим	6	13	подготовка домашнего задания	1	домашнее задание
	включении с оощим эмиттером.			подготовка к контрольной работе	2	контрольная работа
14.	Тема 14. Составные транзисторы. Разновидности дискретных транзисторов.	6	14	подготовка домашнего задания	1	письменное домашнее задание
				подготовка домашнего задания	4	домашнее задание
	Тема 15. Полевые транзисторы.			подготовка домашнего задания	1	письменное домашнее задание
15.		6	15	подготовка домашнего задания	1	домашнее задание
				подготовка к тестированию	2	тестирование
16.	Тема 16. МДП-транзисторы.	6	16	подготовка домашнего задания	3	письменное домашнее задание
17	Тема 17. Транзисторы полупроводниковых интегральных схем.	6	17	подготовка домашнего задания	2	письменное домашнее задание
' ' .				подготовка к контрольной работе	1	контрольная работа
18.	Тема 18. Элементы интегральных схем на МОП-транзисторах.	6	18	подготовка к коллоквиуму	3	коллоквиум
	Итого				72	

5. Образовательные технологии, включая интерактивные формы обучения

Используются следующие формы учебной работы: лекции, практические занятия, самостоятельная работа студента (выполнение индивидуальных домашних заданий), консультации. Материалы курса лекций, список контрольных вопросов, задания для практических занятий и самостоятельной работы имеются в электронном варианте.

Консультации проводятся в обозначенное в расписании время и в режиме "online ".

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение в физику полупроводников.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: Найти собственную концентрацию кремния при T0 =300K. Во сколько раз изменится собственная концентрация свободных носителей заряда в кремнии, если температура увеличится на 500C? Ширина запрещенной зоны для кремния фз=1,1 В. Эффективные плотности состояний для кремния Nv=1,02*1019cм-3, Nc=2,8*1019cм-3.

Тема 2. Рекомбинация носителей.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: . Имеется германиевый p-n-переход с концентрацией Nд=103 Na, причем на каждые 108 атомов германия приходится один атом акцепторной примеси. Определить равновесную высоту потенциального барьера при температуре T=300K (концентрации атомов N и ионизированных атомов ni принять равными 4,4*1022 и 2,5*1013 см-3 соответственно).

Тема 3. Законы движения носителей в полупроводниках.

письменное домашнее задание, примерные вопросы:

Вывести основные уравнения непрерывности, характеризующие движения носителей в полупроводниках и получить частные случаи.

Тема 4. Электрические переходы.

письменное домашнее задание, примерные вопросы:

концентрация акцепторной примеси Na=2·1016см-3, концентрация донорной примеси Nд=1019см-3, диэлектрическая проницаемость кремния ε=12. Определить равновесную ширину и высоту потенциального барьера, а также удельные сопротивления n и р областей. Как изменится высота потенциального барьера при увеличении температуры на 30К? Nc= 2,8•1019см-3, Nv= 1,02•1019см-3.

тестирование, примерные вопросы:

Выбрать и обосновать правильный ответ: В неравновесном состоянии эквивалентное время жизни избыточных носителей определяется 1) временем жизни основных носителей; 2) временем рассасывания избыточных носителей; 3) временем жизни неосновных носителей; 4) временем накопления избыточных носителей.

Тема 5. Анализ р-п перехода в неравновесном состоянии.

домашнее задание, примерные вопросы:

Имеется германиевый р-n-переход с концентрацией Nд=103 Na, причем на каждые 108 атомов германия приходится один атом акцепторной примеси. Определить равновесную высоту потенциального барьера при температуре T=300K (концентрации атомов N и ионизированных атомов ni принять равными 4,4*1022 и 2,5*1013 см-3 соответственно).

коллоквиум, примерные вопросы:

Ответить на вопросы: Как изменяется высота потенциального барьера и ширина p-n перехода при прямом и обратном включении. Контакт металл -полупроводник.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: В идеальном p-n переходе обратный ток насыщения I0=10 -14A при T=300K и I0=10-9A при T=1250C. Определить, в каком случае напряжение на p-n переходе будет меньше и на сколько, если прямой ток равен 1мA.

Тема 6. Полупроводниковые диоды.

домашнее задание, примерные вопросы:

Определить, во сколько раз изменится дифференциальное сопротивление полупроводникового диода с изменением температуры окружающей среды от 270С до 600С при прямом напряжении 0,5В.

Тема 7. Обратная характеристика реального диода.

домашнее задание, примерные вопросы:

Определить, во сколько раз изменится дифференциальное сопротивление полупроводникового диода при изменении прямого напряжения от 0,4 до 0,5В при неизменной температуре окружающей среды T=300K.

контрольная работа, примерные вопросы:

Предлагаются 2 задачи: 1) на зонную структуру полупроводника; 2) электронно-дырочный переход в равновесном и неравновесном состояниях.

письменное домашнее задание, примерные вопросы:

. Предлагается решить 3 задачи. Пример задачи:Определить, во сколько раз изменится дифференциальное сопротивление и сопротивление по постоянному току полупроводникового диода с изменением температуры окружающей среды от 270С до 600С при прямом напряжении 0,5В.

Тема 8. Барьерная и диффузионная емкости диода.

домашнее задание, примерные вопросы:

Найти барьерную емкость германиевого диода, если удельное сопротивление p-областиσр=3,5Ом см, высота потенциального барьера Δφ0=0,35B, приложенное обратное напряжение Uoбр=5B и площадь поперечного сечения перехода S=1мм2. Подвижность дырок в германии □p=0,19м2/с, диэлектрическая проницаемость германия □=16.

письменное домашнее задание, примерные вопросы:

Определить диффузионную емкость и дифференциальное сопротивление германиевого диода, работающего при T=300K и напряжении U=0,25B. Обратный ток I0=10мкA, диффузионная длина электронов Ln=0,1см, подвижность электронов □n=0,39м2/Вс, толщина базы w=10-4см. Как изменятся дифференциальное сопротивление и диффузионная емкость диода при увеличении температуры на 60K?

Тема 9. Биполярный транзистор.

домашнее задание, примерные вопросы:

. Выбрать и обосновать правильный ответ:модуляция толщины базы влияет на ту долю инжектированных электронов, которые доходят до коллектора.. Это приводит 1) к возникновению конечного дифференциального сопротивления коллекторного перехода; 2) к возникновению диффузионной емкости коллекторного перехода; 3) к возникновению внутренней обратной связи по напряжению.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: Транзистор включен по схеме с общей базой. Определить сопротивление эмиттерного перехода при T=300K, если Iэ=2мA. Как изменится сопротивление эмиттерного перехода, если температура увеличится на 30K?

Тема 10. Статические характеристики транзистора ОБ.

домашнее задание, примерные вопросы:

Принцип работы биполярного транзистора. Получить аналитически характеристики транзистора при включении с общей базой, используя его математическую модель.

коллоквиум, примерные вопросы:

Получить аналитические выражения для идеализированных статических характеристик и опстроить для схемы с ОБ, используя модель Молла -Эберса. Рассмотреть и построить реальные характеристики.

письменное домашнее задание, примерные вопросы:

Транзистор n-p-n включен по схеме ОБ Определить дифференциальное сопротивление коллекторного перехода для германиевого n-p-n транзистора, если Na=1015 см-3, w=30мкм, Uk=5B, I=1мA, L=0,1мм, диэлектрическая проницаемость германия □=16, □≈1, I=1мA.

Тема 11. Малосигнальная эквивалентная схема и статические параметры транзистора ОБ.

домашнее задание, примерные вопросы:

11Транзистор n-p-n включен по схеме ОБ Определить дифференциальное сопротивление коллекторного перехода для германиевого n-p-n транзистора, если Na=1015 см-3, w=30мкм, Uk=5B, Iэ=1мA, L=0,1мм, диэлектрическая проницаемость германия \square =16, \square \approx 1, Iэ=1мA.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: Высокочастотный транзистор на частоте fuзм= 20МГц имеет модуль коэффициента передачи h21э=6. статический коэффициент тока базы h21э=50. Найти частоту, на которой модуль коэффициента передачи тока эмиттера уменьшается в 2 раза по сравнению со статическим коэффициентом тока эмиттера.

тестирование, примерные вопросы:

Переходные и частотные свойства биполярного транзистора лучше 1) в схеме ОЭ; 2) в схеме ОБ; 3) в схеме ОК; 4) не зависят от схем включения транзисторов.

Тема 12. Динамические параметры транзистора ОБ.

домашнее задание, примерные вопросы:

Получить расчетные соотношения для динамических параметров транзистора для схемы включения с ОБ.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: На низких частотах коэффициент передачи тока эмиттера транзистора h21б= -0,9, его предельная частота fα=1,1МГц. Определить: а) модуль коэффициента передачи тока эмиттера на частоте 2МГц; б) частоту, на которой модуль коэффициента передачи тока эмиттера уменьшится до значения 0,5.

Тема 13. Характеристики и параметры транзистора при включении с общим эмиттером.

домашнее задание, примерные вопросы:

Высокочастотный транзистор на частоте fuзм= 20МГц имеет модуль коэффициента передачи lh21э = 6. статический коэффициент тока базы h21э=50. Найти частоту, на которой модуль коэффициента передачи тока эмиттера уменьшается в 2 раза по сравнению со статическим коэффициентом тока эмиттера.

контрольная работа, примерные вопросы:

Предлагаются 2 задачи: 1) определение статических и динамических параметров диода; 2) биполярный транзистор составной транзистор.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: Высокочастотный транзистор на частоте fuзм= 20МГц имеет модуль коэффициента передачи h21э=6. статический коэффициент тока базы h21э=50. Найти частоту, на которой модуль коэффициента передачи тока эмиттера уменьшается в 2 раза по сравнению со статическим коэффициентом тока эмиттера.

Тема 14. Составные транзисторы. Разновидности дискретных транзисторов.

домашнее задание, примерные вопросы:

Получить формулы для расчета коэффициента передачи тока эмиттера и входного сопротивления для составного транзистора.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: Транзистор имеет h? коэффициенты: h119=2кОм, h129=5,9*10-4, h219= 60, h229=40мкСм. Найти h? коэффициенты для схемы с общей базой и общим эмиттером. Составить схему составного транзистора ОЭ на двух одинаковых транзисторах и найти h119 и h219? коэффициенты. Предлагается решить 3 задачи. Пример задачи: Транзистор имеет h? коэффициенты: h119=2кОм, h129=5,9*10-4, h219= 60, h229=40мкСм. Найти h? коэффициенты для схемы с общей базой и общим эмиттером. Составить схему составного транзистора ОЭ на двух одинаковых транзисторах и найти h119 и h219? коэффициенты.

Тема 15. Полевые транзисторы.

домашнее задание, примерные вопросы:

Удельная проводимость канала n-типа полевого транзистора σ = 5Cm/м и толщина канала ω = 6мкм при напряжении Uзи=0. Найти напряжение отсечки Uзиотс, если подвижность электронов μ n=0,13м2/Bc, а относительная диэлектрическая проницаемость кремния ϵ =12. Найти максимальную крутизну и минимальное сопротивление канала, если Iснач=1мA.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: В МДП- транзисторе с каналом n- типа ширина затвора 0,8 мм, длина канала L=5 мкм, толщина слоя диэлектрической изоляции (оксидного) d=150нм, подвижность электронов в канале n=0,02 м2/Вс, относительная диэлектрическая проницаемость оксидной пленки n=3,7, крутизна характеристики транзистора в пологой области стоковой BAX S=5,6мA/B, Определить емкость затвора и предельную частоту тестирование, примерные вопросы:

Для полевого транзистора с управляющим p-n переходом и n? каналом, включенным по схеме с общим истоком, полярность напряжения на затворе (Uзи) и на стоке (Uси) относительно земли должна удовлетворять соотношениям 1) Uзи > 0, Ucи > 0; 2) Uзи > 0, Ucи < 0; 3) Uзи < 0, Ucи < 0; 4) Uзи < 0, Ucи >0.

Тема 16. МДП-транзисторы.

письменное домашнее задание, примерные вопросы:

Предлагается решить 3 задачи. Пример задачи: В МДП- транзисторе с каналом n- типа ширина затвора 0,8 мм, длина канала L=5 мкм, толщина слоя диэлектрической изоляции (оксидного) d=150нм, подвижность электронов в канале □n=0,02 м2/Вс, относительная диэлектрическая проницаемость оксидной пленки □=3,7, крутизна характеристики транзистора в пологой области стоковой ВАХ S=5,6мA/B, Определить емкость затвора и предельную частоту

Тема 17. Транзисторы полупроводниковых интегральных схем.

контрольная работа, примерные вопросы:

Предлагаются 2 задачи: 1)полевой транзистор с управлющим p-n переходом, 2) МДПтранзисторы.

письменное домашнее задание, примерные вопросы:

Рассмотреть осбенностость работы базовые элементы интегральных транхисторов: многоэмиттерные транзисторы, многоколлекторные транзисторы, транзисторы с диодом Шоттки.

Тема 18. Элементы интегральных схем на МОП-транзисторах.

коллоквиум, примерные вопросы:

Базовые элементы интегральных логических схнм на МДП-транзистооах.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Билет N1.

- 1. Энергетические уровни твердого тела. Зонная структура полупроводников и типы проводимости.
- 2. Анализ идеализированного диода. Решение диффузионного уравнения. Вольтамперная характери-стика идеализированного диода.

Билет N2.

- 1. Концентрация носителей в собственном и примесном полупроводниках.
- 2. Классификация p-n переходов. Структура p-n. Анализ перехода в равновесном состоянии.

Билет N3.

- 1. Рекомбинация носителей. Равновесное и неравновесное состояние. Время жизни.
- 2. Анализ p-n перехода в неравновесном состоянии.

Билет N4.

1. Законы движения носителей в полупроводниках.

2. Характеристические сопротивления. Барьерная и диффузионная емкости диода. Эквивалентная схема диода по переменному току.

Билет N5.

- 1. Эффект поля.
- 2. Прямая характеристика реального диода. Работа диода при высоком уровне инжекции. Эквивалентная схема диода при прямом включении по постоянному току.

7.1. Основная литература:

- 1.Таюрская Г.В., Масленникова Ю.С. Полупроводниковая электроника / Г.В. Таюрская, Ю.С. Масленникова Казань: Казан. ун-т, 2015. 262 с. Электронная версия . Публикация доступна в электронном каталоге НБ КФУ и по прямой ссылке http://libweb.kpfu.ru/cbooks/06-IPh//06-_ 42_ A5-000999.pdf.
- 2. Бурбаева, Н.В. Основы полупроводниковой электроники [Электронный ресурс] : учеб. пособие ? Электрон. дан. ? Москва : Физматлит, 2012. ? 312 с. ? Режим доступа: https://e.lanbook.com/book/5261.
- 3. Основы полупроводниковой электроники [Электронный ресурс] : Учебное пособие для вузов / Игумнов Д.В., Костюнина Г.П. 2-еизд., дополн. М. : Горячая линия Телеком, 2011. http://www.studmedlib.ru/book/ISBN9785991201803.html

Авторы Игумнов Д.В., Костюнина Г.П.

ИздательствоГорячая линия - Телеком

Год издания2011

ПрототипЭлектронное издание на основе: Основы полупроводниковой электроники. Учебное пособие для вузов. - 2-еизд., дополн. - М.: Горячая линия - Телеком, 2011. - 394 с: ил. - ISBN 978-5-9912-0180-.

7.2. Дополнительная литература:

- 1. Кольцов, Г.И. Физика полупроводниковых приборов. Расчет параметров биполярных приборов. Сборник задач [Электронный ресурс] : учеб. пособие / Г.И. Кольцов, С.И. Диденко, М.Н. Орлова. ? Электрон. дан. ? Москва : МИСИС, 2012. ? 78 с. ? Режим доступа: https://e.lanbook.com/book/47460.
- 2. Физика полупроводниковых приборов. [Электронный ресурс] / Лебедев А. И. М. : ФИЗМАТЛИТ, 2008. http://www.studmedlib.ru/book/ISBN9785922109956.html

АвторыЛебедев А. И.

ИздательствоФизматлит

Год издания2008

ПрототипЭлектронное издание на основе: Лебедев А. И. Физика полупроводниковых приборов. -М.: ФИЗМАТЛИТ, 2008. - 488 с. - ISBN 978-5-9221-0995-6.

3. Полупроводниковая электроника [Электронный ресурс] / Коллектив авторов; глав. ред. Мовчан Д.А. - М. : ДМК Пресс, 2015. - (Серия 'Схемотехника'). - http://www.studmedlib.ru/book/ISBN9785970603123.html

АвторыКоллектив авторов; глав. ред. Мовчан Д.А.

ИздательствоДМК-пресс

Год издания2015

ПрототипЭлектронное издание на основе: Полупроводниковая электроника. - М.: ДМК Пресс, 2015. - 592 с.: илл. - (Серия 'Схемотехника'). - ISBN 978-5-97060-312-3.

4. Кольцов, Г.И. Физика полупроводниковых приборов. Расчет параметров биполярных приборов. Сборник задач [Электронный ресурс] : учеб. пособие / Г.И. Кольцов, С.И. Диденко, М.Н. Орлова. ? Электрон. дан. ? Москва : МИСИС, 2012. ? 78 с. ? Режим доступа: https://e.lanbook.com/book/47460.

7.3. Интернет-ресурсы:

Воронков Э.Н. Твердотельная электроника DOC - М.: МЭИ, 2002. - 181 с. ♦371.39 МБ Гуртов В.А.Твердотельная электроника PDF - М.: Техносфера, 2008. - 512 с. - ISBN: 978-5-94836-187-1 (3-е изд., доп.)

Автор: Ульрих ШШумахер Название: Полупроводниковая электроника - Издательство: www.infineon.com Год: 2004 Формат: pdf Размер: 102,63 МВ Для сайта: MirKnig.com Гусев В.А. Твердотельная электроника СНМ - М.: СевНТУ, 2004. - 635 с. - ISBN 966-7473-70-8. ♦4538.11 МБ

Троян П.Е. Твердотельная электроника PDF - Учебное пособие. Томск.: ТУСУР, 2006. ? 330 с. ◆622.90 МБ

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Твердотельная электроника" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB.audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "КнигаФонд", доступ к которой предоставлен студентам. Электронно-библиотечная система "КнигаФонд" реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. КнигаФонд обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям новых ФГОС ВПО.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "БиблиоРоссика", доступ к которой предоставлен студентам. В ЭБС "БиблиоРоссика "представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен студентам. Электронная библиотечная система "Консультант студента" предоставляет полнотекстовый доступ к современной учебной литературе по основным дисциплинам, изучаемым в медицинских вузах (представлены издания как чисто медицинского профиля, так и по естественным, точным и общественным наукам). ЭБС предоставляет вузу наиболее полные комплекты необходимой литературы в соответствии с требованиями государственных образовательных стандартов с соблюдением авторских и смежных прав.

мультимедийная аудитория

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 10.03.01 "Информационная безопасность" и профилю подготовки Безопасность автоматизированных систем .

Программа дисциплины "Твердотельная электроника"; 10.03.01 Информационная безопасность; доцент, к.н. (доцент) Таюрская Г.В.

Автор(ы):		
Таюрская	ι Γ.Β	
" "	201 г.	
Da	- ().	
Рецензен	` '	
Шерстюко	ов О.Н	
" "	201 г.	