МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Высшая школа информационных технологий и интеллектуальных систем

подписано электронно-цифровой подписью

Программа дисциплины

Распределенные вычисления и приложения Б1.В.ДВ.7

Направление подготовки: 09.03.03 - Прикладная информатика
Профиль подготовки: не предусмотрено
Квалификация выпускника: бакалавр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):
Храмченков Э.М.

Рецензент(ы): Насрутдинов М.Ф.

CO	СП	Λ	\sim	٦D	Λ	ш	\smallfrown	
υU	1 / 1	н	U	JD	А	П	v	

Заведующий(ая) кафедрой: Хасьянов А. Ф. Тротокол заседания кафедры No от "" 201г
иебно-методическая комиссия Высшей школы информационных технологий и
інтеллектуальных систем: Іротокол заседания УМК No от ""201г
Регистрационный No 689513810

э л е к т р о н н ы й **У н и в е р с и т е т**

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) Храмченков Э.М., Edward.Khramchenkov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины является приобретение обучающимся следующих навыков:

- Умение разрабатывать параллельный программный код с ипользованием программно-аппаратного комплекса Nvidia CUDA
- Умение разрабатывать параллельный программный код с ипользованием программно-аппаратного комплекса OpenCL
- Умение использовать особенности массивно-параллельных архитектур для увеличения быстродействия программного кода

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.7 Дисциплины (модули)" основной образовательной программы 09.03.03 Прикладная информатика и относится к дисциплинам по выбору. Осваивается на 4 курсе, 7 семестр.

Обучающийся по дисциплине должен владеть следующими навыками:

- 1) Знать базовые методы разработки программного обеспечения
- 2) Знать теорию алгоритмов
- 3) Знать основные принципы устройства и работы центрального процессора, оперативной памяти
- 4) Уметь создавать работоспособный код на языке С/С++
- 5) Уметь работать в командной строке ОС семейства Linux

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции			
	способностью разрабатывать, внедрять и адаптировать прикладное программное обеспечение			
	способностью проектировать ИС в соответствии с профилем подготовки по видам обеспечения			

В результате освоения дисциплины студент:

- 1. должен знать:
- 1) Базовые методы разработки программного обеспечения
- 2) Теорию алгоритмов
- 3) Основные принципы устройства и работы центрального процессора, оперативной памяти
- 2. должен уметь:
- 1) Создавать работоспособный код на языке C/C++
- 2) Работать в командной строке ОС семейства Linux
- 3. должен владеть:
- 1) Языком программирования С/С++

- 2) Навыками работы в ОС Linux
- 4. должен демонстрировать способность и готовность:
- 1) Вовремя выполнять задания преподавателя
- 2) Изучать материал рассмотренный на занятиях
- 3) Самостоятельно получать и анализировать информацию

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 5 зачетных(ые) единиц(ы) 180 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 7 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	аудит их т	иды и час орной ра рудоемко (в часах)	Текущие формы	
	Модуля			Лекции			контроля
1.	Тема 1. Основные методы параллелизации алгоритмов	7		0	0	4	
2.	Тема 2. Оптимизация параллельных вычислений с использованием технологии OpenMP	7		0	0	4	
3.	Тема 3. Оптимизация параллельных вычислений с использованием технологии MPI	7		0	0	4	
4.	Тема 4. Гибридная параллелизация с использованием MPI и OpenMP	7		0	0		Контрольная работа
5.	Тема 5. Технология Nvidia CUDA	7		0	0		Контрольная работа
6.	Тема 6. Технология OpenCL	7		0	0	28	Контрольная работа
	Тема . Итоговая форма контроля	7		0	0	0	Экзамен
	Итого			0	0	72	

4.2 Содержание дисциплины

Тема 1. Основные методы параллелизации алгоритмов

лабораторная работа (4 часа(ов)):

Таксономия Флинна. Основные параллельные архитектуры. Параллельность по данным и функциональная параллельность. Метод параллелизации алгоритмов Фостера. Примеры параллелизации алгоритмов.

Тема 2. Оптимизация параллельных вычислений с использованием технологии OpenMP *пабораторная работа (4 часа(ов)):*

Системы с общей памятью. Оптимизация доступа к памяти при помощи OpenMP. Синхронизация потоков OpenMP. Параллелизация и оптимизация задачи с ипользованием OpenMP.

Тема 3. Оптимизация параллельных вычислений с использованием технологии MPI *пабораторная работа (4 часа(ов)):*

Системы с раздельной памятью. Организация коллективного взаимодействия и синхронизация в MPI. Параллелизация и оптимизация задачи с ипользованием MPI.

Тема 4. Гибридная параллелизация с использованием MPI и OpenMP *пабораторная работа (4 часа(ов)):*

Гетерогенные кластерные системы. Грубая и тонкая параллелизация. Реализация гибридного параллельного алгоритма.

Тема 5. Технология Nvidia CUDA *пабораторная работа (28 часа(ов)):*

Введение в программирование на графических ускорителях. Архитектура GPU Nvidia. Программная модель CUDA. Иерархия памяти CUDA. Работа на нескольких ускорителях в CUDA. Оптимизация параллельных алгоритмов для CUDA. Прикладные библиотеки CUDA для параллельного программирования на ускорителях. Решение задач с использованием технологии Nvidia CUDA.

Тема 6. Технология OpenCL *пабораторная работа (28 часа(ов)):*

Архитектура GPU AMD. Программная модель OpenCL. Иерархия памяти OpenCL. Работа на нескольких ускорителях в OpenCL. Прикладные библиотеки OpenCL для параллельного программирования на ускорителях. Решение задач с использованием технологии OpenCL.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самостоятельной работы	
1.	Тема 1. Основные методы параллелизации алгоритмов	7		Изучение литературы по параллелизации алгоритмов	3	Вопросы касающие параллел алгоритм включень в последую контролы работы	изац рв I щие
2.	Тема 2. Оптимизация параллельных вычислений с использованием технологии ОрепМР	7		Изучение спецификаций OpenMP	3	Вопросы включень в контролы работу	

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самостоя ятельной работы		
3.	Тема 3. Оптимизация параллельных вычислений с использованием технологии MPI	7		Изучение спецификаций МРІ	3	Вопросы включень в контролы работу		
4.	Тема 4. Гибридная параллелизация с использованием MPI и OpenMP	7		подготовка к контрольной работе	3	Контроль ная работа	-	
5.	Тема 5. Технология Nvidia CUDA	7		Изучение спецификаций Nvidia CUDA	12	Вопросы включень в контролы работу		
	CODA			подготовка к контрольной работе	9	Контроль ная работа]_	
6.	Тема 6. Технология	7		Изучение спецификаций OpenCL	12	Вопросы включень в контролы работу		
		OpenCL			подготовка к контрольной работе	9	Контроль ная работа	-
	Итого				54			

5. Образовательные технологии, включая интерактивные формы обучения

- Работа в сети интернет
- Удаленная разработка на кластере по протоколу SSH

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основные методы параллелизации алгоритмов

Вопросы касающиеся параллелизации алгоритмов включены в последующие контрольные работы, примерные вопросы:

1. Базовые принципы параллелизации алгоритмов 2. Понятие параллельности по данным и параллельности по задачам 3. Таксономия Флинна 4. Распределенные системы 5. Системы с общей памятью 6. Гибридные архитектуры 7. Метод Фостера

Тема 2. Оптимизация параллельных вычислений с использованием технологии OpenMP Вопросы включены в контрольную работу, примерные вопросы:

1. Редукция массива с использованием OpenMP 2. Перемножение матриц с использованием OpenMP 3. Барьерная синхронизация в OpenMP

Тема 3. Оптимизация параллельных вычислений с использованием технологии MPI

Вопросы включены в контрольную работу, примерные вопросы:

1. Особенности архитектуры MPI-программы 2. Использование операторов scatter/gather для коллективной обработки данных 3. Методы синхронизации в MPI

Тема 4. Гибридная параллелизация с использованием MPI и OpenMP

Контрольная работа, примерные вопросы:

Вычисление числа пи с использованием гибридного алгоритма. Задача делится на подблоки в каждом из которых применяется OpenMP для параллелизации расчета в рамках процесса MPI. Использование директив MPI для проведения гибридных вычислений и получения корректного результата из набора частичных сумм. Анализ точности вычисленного пи в зависимости от количества итераций и затраченного времени.

Тема 5. Технология Nvidia CUDA

Вопросы включены в контрольную работу, примерные вопросы:

1. Особенности работы с памятью в контексте нитей и потоков Nvidia CUDA 2. Различия в скорости работы разных видов памяти 3. Редукция массива с использованием Nvidia CUDA 4. Библиотека Thrust - особенности и методы использования

Контрольная работа, примерные вопросы:

Реализация параллельного алгоритма умножения матрицы на вектор с использованием CUDA. Реализовать наивный и блочный алгоритм. Рассмотреть варианты 1 и 2 мерных сеток блоков и сеток потоков. Определить оптимальную конфигурацию организации нитей CUDA для каждого размера матрицы. Построение графика производительности последовательного и параллельного алгоритмов в зависимости от размера матриц. Рассмотреть варианты п от 1024 до 8192 с шагом 1024.

Teмa 6. Технология OpenCL

Вопросы включены в контрольную работу, примерные вопросы:

1. Ключевые сходства и различия технологий OpenCL и CUDA 2. Понятие очереди команд OpenCL 3. Умножение матрицы на вектор с ипользованием OpenCL 4. Библиотека VexCL - особенности и методы использования

Контрольная работа, примерные вопросы:

Параллельное транспонирование матрицы с использованием OpenCL. Реализовать наивный и блочный алгоритм. Провести оптимизацию доступа в память. Построение графика производительности последовательного и параллельного алгоритмов в зависимости от размера матриц. Рассмотреть варианты n от 1024 до 8192 с шагом 1024.

Итоговая форма контроля

экзамен (в 7 семестре)

Примерные вопросы к итоговой форме контроля

- 1. Таксономия Флинна.
- 2. Виды параллельных архитектур
- 3. Метод параллелизации Фостера
- 4. Базовые принципы организации памяти GPU
- 5. Различия архитектуры CPU и GPU
- 6. Константная память и память регистров доступ и применение
- 7. Глобальная память доступ и применение
- 8. Общая(разделенная) память доступ и применение
- 9. Текстурная память доступ и применение
- 10. Оптимизация доступа в память
- 11. Концепции UVA и UV
- 12. Концепция zero-copy
- 13. Алгоритм Флойда параллельная реализация

- 14. Алгоритм редукции параллельная реализация
- 15. Алгоритм префиксной суммы параллельная реализация
- 16. Использование нескольких GPU в одном приложении
- 17. Алгоритм блочного произведения двух квадратных матриц на CUDA
- 18. Основные отличия моделей программирования CUDA и OpenCL
- 19. Параллельный алгоритм численного моделирования нагрева стержня
- 20. Сортировка на параллельных системах
- 21. Основные программные библиотеки CUDA
- 22. Использование кортежей в библиотеке Thrust
- 23. Элементы функционального программирования на GPU
- 24. Асинхронное выполнение и передача данных
- 25. Отладка и профилирование программ CUDA

7.1. Основная литература:

Сандерс Дж., Технология CUDA в примерах: введение в программирование графических процессоров [Электронный ресурс] / Сандерс Дж., Кэндрот Э. - М. : ДМК Пресс, 2011. - 232 с. - ISBN 978-5-94074-504-4 - Режим доступа:

http://www.studentlibrary.ru/book/ISBN9785940745044.html

Богачёв, К.Ю. Основы параллельного программирования. [Электронный ресурс] : Учебные пособия - Электрон. дан. - М. : Издательство 'Лаборатория знаний', 2015. - 345 с. - Режим доступа: http://e.lanbook.com/book/70745

Боресков А.В., Основы работы с технологией CUDA [Электронный ресурс] / Боресков А.В., Харламов А.А. - М. : ДМК Пресс, 2010. - 232 с. - ISBN 978-5-94074-578-5 - Режим доступа: http://www.studentlibrary.ru/book/ISBN9785940745785.html

7.2. Дополнительная литература:

Архитектура ЭВМ и вычислительных систем: Учебник / Максимов Н.В., Партыка Т.Л., Попов И.И., - 5-е изд., перераб. и доп. - М.:Форум, НИЦ ИНФРА-М, 2016. - 512 с. ISBN 978-5-91134-742-0- Режим доступа: http://znanium.com/catalog.php?bookinfo=552537

Федотов И.Е., Модели параллельного программирования [Электронный ресурс] / Федотов И.Е. - М.: СОЛОН-ПРЕСС, 2012. - 384 с. - ISBN 978-5-91359-102-9 - Режим доступа: http://www.studentlibrary.ru/book/ISBN9785913591029.html

Топорков, В.В. Модели распределенных вычислений. [Электронный ресурс] : Монографии - Электрон. дан. - М. : Физматлит, 2011. - 320 с. - Режим доступа: http://e.lanbook.com/book/2339

7.3. Интернет-ресурсы:

Библиотека VexCL - http://vexcl.readthedocs.io/en/latest/

Программирование на MPI - https://computing.llnl.gov/tutorials/mpi/

Программирование на OpenMP - http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Технология Nvidia CUDA - http://docs.nvidia.com/cuda/cuda-c-programming-guide

Технология OpenCL - http://handsonopencl.github.io/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Распределенные вычисления и приложения" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb). конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен студентам. Электронная библиотечная система "Консультант студента" предоставляет полнотекстовый доступ к современной учебной литературе по основным дисциплинам, изучаемым в медицинских вузах (представлены издания как чисто медицинского профиля, так и по естественным, точным и общественным наукам). ЭБС предоставляет вузу наиболее полные комплекты необходимой литературы в соответствии с требованиями государственных образовательных стандартов с соблюдением авторских и смежных прав.

OC Linux SSH клиент Nvidia CUDA

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 09.03.03 "Прикладная информатика" и профилю подготовки не предусмотрено .

Авт	ор(ы):			
Хра	амченков	Э.М		
"	"	201	Г.	
			_	
PeL	цензент(ь	ı):		
Had	срутдинов	м.Ф		
"	"	201	Г.	