МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

Математические модели теории упругости Б1.В.ДВ.23

Направление подготовки: 01.03.04 - Прикладная математика
Профиль подготовки: Математическое моделирование
Квалификация выпускника: <u>бакалавр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
Бахтиева Л.У.
Рецензент(ы):
Плещинский Н.Б.
СОГЛАСОВАНО:

СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Плещинский Н. Б. Протокол заседания кафедры No от """ 201г
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:
Протокол заседания УМК No от "" 201г
Регистрационный No 941917
Казань
2017

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Бахтиева Л.У. Кафедра прикладной математики отделение прикладной математики и информатики , Lyalya.Bakhtieva@kpfu.ru

1. Цели освоения дисциплины

Дисциплина знакомит студентов с методикой построения математических моделей в некоторых задачах теории упругости, а также с численными методами решения этих задач. На самостоятельных занятиях студенты приобретают навыки решения задач теории упругости с помощью системы МАТЛАБ

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.23 Дисциплины (модули)" основной образовательной программы 01.03.04 Прикладная математика и относится к дисциплинам по выбору. Осваивается на 3 курсе, 6 семестр.

Дисциплина базируется на знаниях, полученных в рамках дисциплин "Математический анализ", "Дифференциальные уравнения", "Уравнения математической физики", "Численные методы".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-2 (профессиональные компетенции)	способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии
ПК-5 (профессиональные компетенции)	способность критически переосмысливать накопленный опыт, изменять при необходимости вид и характер своей профессиональной деятельности
ПК-7 (профессиональные компетенции)	способность собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным, профессиональным, социальным и этическим проблемам
ПК-8 (профессиональные компетенции)	способность формировать суждения о значении и последствиях своей профессиональной деятельности с учетом социальных, профессиональных и этических позиций

В результате освоения дисциплины студент:

1. должен знать:

основные положения теории упругости

2. должен уметь:

ориентироваться в способах построения математических моделей

3. должен владеть:

теоретическими знаниями о численных методах решения краевых задач

4. должен демонстрировать способность и готовность: навыки численного решения краевых задач с помощью системы Matlab

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 6 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля		-	Лекции	Практические занятия	лабораторные работы	
1.	Тема 1. Основные понятия, константы и переменные теории упругости	6	1	2	0	2	Письменное домашнее задание
2.	Тема 2. Дифференциальные уравнения равновесия	6	2-3	4	0	4	Письменная работа
3.	Тема 3. Основные уравнения теории упругости и способы их решения	6	4	2	0	2	Письменное домашнее задание
4.	Тема 4. Плоская задача в полярных координатах	6	5	2	0	2	Письменное домашнее задание
5.	Тема 5. Изгиб прямоугольных пластин	6	6	2	0	2	Контрольная работа
6.	Тема 6. Изгиб круглых пластин	6	7	2	0	2	Письменное домашнее задание
7.	Тема 7. Вариационные методы решения задач теории упругости	1	8	2	0	2	Письменная работа

Раздел N Дисциплины/ Модуля		Семестр Неделя семестра		(в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
ı×	Тема 8. Знакомство с основными возможностями системы Matlab	6	9	2	0	2	Письменное домашнее задание
9.	Тема 9. Программирование в системе Matlab	6	10	2	0	2	Письменное домашнее задание
10.	Тема 10. Работа с матрицами	6	11	2	0	2	Письменное домашнее задание
11.	Тема 11. Численное дифференцирование и интегрирование	6	12	2	0	2	
12.	Тема 12. Использование прикладных пакетов	6	13	2	0	2	Письменное домашнее задание
13.	Тема 13. Графика в системе Matlab	6	14	2	0	2	Письменное домашнее задание
14.	Тема 14. Графический интерфейс пользователя	6	15	2	0	2	Письменное домашнее задание
15.	Тема 15. Численные методы решения дифференциальных уравнений	6	16	2	0	2	Письменное домашнее задание
16.	Тема 16. Решение задач теории упругости с помощью системы Matllab	6	17	2	0	2	Письменное домашнее задание
	Тема 17. Задача устойчивости прямоугольной пластины под действием динамического сжатия	6	18	2	0	2	Контрольная работа
·	Тема . Итоговая форма контроля	6		0	0	0	Экзамен
	Итого			36	0	36	

4.2 Содержание дисциплины

Тема 1. Основные понятия, константы и переменные теории упругости *пекционное занятие (2 часа(ов)):*

Модель идеально упругого тела.

лабораторная работа (2 часа(ов)):

Напряжения

Тема 2. Дифференциальные уравнения равновесия

лекционное занятие (4 часа(ов)):

Деформации и перемещения в упругом теле, уравнения неразрывности деформаций.

лабораторная работа (4 часа(ов)):

Обобщенный закон Гука

Тема 3. Основные уравнения теории упругости и способы их решения

лекционное занятие (2 часа(ов)):

Плоская задача теории упругости и ее решение в напряжениях.

лабораторная работа (2 часа(ов)):

Примеры решения некоторых задач

Тема 4. Плоская задача в полярных координатах

лекционное занятие (2 часа(ов)):

Примеры решения некоторых задач

лабораторная работа (2 часа(ов)):

Примеры решения некоторых задач

Тема 5. Изгиб прямоугольных пластин

лекционное занятие (2 часа(ов)):

Решение задачи изгиба пластины методом коллокаций и методом наименьших квадратов

лабораторная работа (2 часа(ов)):

Решение задачи изгиба пластины методом коллокаций и методом наименьших квадратов

Тема 6. Изгиб круглых пластин

лекционное занятие (2 часа(ов)):

Расчет гибких круглых пластин

лабораторная работа (2 часа(ов)):

Расчет гибких круглых пластин

Тема 7. Вариационные методы решения задач теории упругости

лекционное занятие (2 часа(ов)):

Расчет пластины на изгиб методом Бубнова-Галеркина

лабораторная работа (2 часа(ов)):

Расчет пластины на изгиб методом Бубнова-Галеркина

Тема 8. Знакомство с основными возможностями системы Matlab

лекционное занятие (2 часа(ов)):

Работа в режиме прямых вычислений.

лабораторная работа (2 часа(ов)):

Вычисление корней полинома и нулей функции

Тема 9. Программирование в системе Matlab

лекционное занятие (2 часа(ов)):

Работа с файлами

лабораторная работа (2 часа(ов)):

Работа с файлами

Тема 10. Работа с матрицами

лекционное занятие (2 часа(ов)):

Системы алгебраических уравнений.

лабораторная работа (2 часа(ов)):

Численные методы решения нелинейных алгебраических уравнений: метод последовательных приближений, метод упругих решений

Тема 11. Численное дифференцирование и интегрирование

лекционное занятие (2 часа(ов)):

Численное дифференцирование и интегрирование

лабораторная работа (2 часа(ов)):

Численное дифференцирование и интегрирование

Тема 12. Использование прикладных пакетов

лекционное занятие (2 часа(ов)):

Использование прикладных пакетов

лабораторная работа (2 часа(ов)):

Использование прикладных пакетов

Тема 13. Графика в системе Matlab

лекционное занятие (2 часа(ов)):

Графика в системе Matlab

лабораторная работа (2 часа(ов)):

Графика в системе Matlab

Тема 14. Графический интерфейс пользователя

лекционное занятие (2 часа(ов)):

Графический интерфейс пользователя

лабораторная работа (2 часа(ов)):

Графический интерфейс пользователя

Тема 15. Численные методы решения дифференциальных уравнений

лекционное занятие (2 часа(ов)):

Численные методы решения дифференциальных уравнений

лабораторная работа (2 часа(ов)):

Численные методы решения дифференциальных уравнений

Тема 16. Решение задач теории упругости с помощью системы Matllab

лекционное занятие (2 часа(ов)):

Решение задач теории упругости с помощью системы Matllab

лабораторная работа (2 часа(ов)):

Решение задач теории упругости с помощью системы Matllab

Тема 17. Задача устойчивости прямоугольной пластины под действием динамического сжатия

лекционное занятие (2 часа(ов)):

Алгоритм расчета пластины под действием динамического сжатия

лабораторная работа (2 часа(ов)):

Расчет пластины под действием динамического сжатия

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1	Тема 1. Основные понятия, константы и переменные теории упругости	6	1	подготовка домашнего задания	1 1	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
2.	Тема 2. Дифференциальные уравнения равновесия	6	2-3	подготовка домашнего задания	2	домашнее задание
3.	Тема 3. Основные уравнения теории упругости и способы их решения	6	4	подготовка домашнего задания	1	домашнее задание
4.	Тема 4. Плоская задача в полярных координатах	6	5	подготовка домашнего задания	1	домашнее задание
5.	Тема 5. Изгиб прямоугольных пластин	6	6	подготовка к контрольной работе	1	контрольная работа
6.	Тема 6. Изгиб круглых пластин	6	7	подготовка домашнего задания	1	домашнее задание
7.	Тема 7. Вариационные методы решения задач теории упругости		8	подготовка домашнего задания	1	домашнее задание
8.	Тема 8. Знакомство с основными возможностями системы Matlab	6	9	подготовка домашнего задания	1	домашнее задание
9.	Тема 9. Программирование в системе Matlab	6	10	подготовка домашнего задания	1	домашнее задание
10.	Тема 10. Работа с матрицами	6	11	подготовка домашнего задания	1	домашнее задание
11.	Тема 11. Численное дифференцирование и интегрирование	6	12	подготовка к контрольной точке	1	контрольная точка
12.	Тема 12. Использование прикладных пакетов	6	13	подготовка домашнего задания	1	домашнее задание
13.	Тема 13. Графика в системе Matlab	6	14	подготовка домашнего задания	1	домашнее задание
14.	Тема 14. Графический интерфейс пользователя	6	15	подготовка домашнего задания	1	домашнее задание
15.	Тема 15. Численные методы решения дифференциальных уравнений	6	16	подготовка домашнего задания	1	домашнее задание
16.	Тема 16. Решение задач теории упругости с помощью системы Matllab	6	17	подготовка домашнего задания	1	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
17.	Тема 17. Задача устойчивости прямоугольной пластины под действием динамического сжатия	6	18	подготовка к контрольной работе		контрольная работа
	Итого				18	

5. Образовательные технологии, включая интерактивные формы обучения

Активные и интерактивные формы проведения занятий в сочетании с внеаудиторной работой.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основные понятия, константы и переменные теории упругости

домашнее задание, примерные вопросы:

Изучение литературы по теме: Основные определениям теории упругости

Тема 2. Дифференциальные уравнения равновесия

домашнее задание, примерные вопросы:

Изучение литературы по теме: Вывод дифференциальных уравнений равновесия

Тема 3. Основные уравнения теории упругости и способы их решения

домашнее задание, примерные вопросы:

Изучение литературы по теме: Способы решения уравнений теории упругости

Тема 4. Плоская задача в полярных координатах

домашнее задание, примерные вопросы:

Самостоятельный вывод уравнений для плоской задачи в полярных координатах

Тема 5. Изгиб прямоугольных пластин

контрольная работа, примерные вопросы:

Проверка знаний по теме: Решение задачи изгиба прямоугольной пластины с конкретными физическими и геометрическими параметрами при различных краевых условиях

Тема 6. Изгиб круглых пластин

домашнее задание, примерные вопросы:

Изучение литературы по теме: Вывод уравнений изгиба круглых пласти

Тема 7. Вариационные методы решения задач теории упругости

домашнее задание, примерные вопросы:

Изучение литературы по теме: Решение краевой задачи одним из вариационных методов

Тема 8. Знакомство с основными возможностями системы Matlab

домашнее задание, примерные вопросы:

1. Вычислить гамма-функцию $\Gamma(x)$ для x=0.1,0.2,...,10. 2. Вычислить все значения корня 6-й степени из комплексного числа z=? 64, Сравнить полученный результат с результатом выполнения команды $x=z^{(1/n)}$.

Тема 9. Программирование в системе Matlab

домашнее задание, примерные вопросы:

1. Написать программу, считывающую из некоторого текстового файла заданное число строк и выводящую эти данные в командное окно. 2. Написать программу - сценарий, преобразующую массив чисел из десятичной системы счисления в двоичную (использовать функцию dec2bin()). 3. Написать программу - функцию, вычисляющую направляющие косинусы заданного трехмерного вектора.

Тема 10. Работа с матрицами

домашнее задание, примерные вопросы:

1. Решить систему с помощью формул Крамера. 2. Решить систему нелинейных уравнений: $2x - y^2 + z = 1$, $y^2 - z^2 = 0$, x + 2y - 3z = 1, для решения применить метод последовательных приближений (итерационная процедура x + 1 = B A(x + 1)).

Тема 11. Численное дифференцирование и интегрирование

контрольная точка, примерные вопросы:

Проверка выполненных заданий

Тема 12. Использование прикладных пакетов

домашнее задание, примерные вопросы:

1. С помощью функции nchoosek(n,k)=Cnk построить разложение бинома $(x+y)^n$ для n=10. Ответ записать в символьном виде. 2. Даны два числовых массива x и y. Построить график интерполирующей функции y(x), используя функции пакета Spline Toolbox .

Тема 13. Графика в системе Matlab

домашнее задание, примерные вопросы:

1. Изобразить циферблат часов с движущимися стрелками. 2. Построить график поверхности z = 1 - x2 - y2 при 0 < x < 1, 0 < y < 1 с использованием функций shading interp, diffuse, colormap() и вычислить объем, заключенный между указанной поверхностью и плоскостью z = 0 (V $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ z(x i, y k) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

Тема 14. Графический интерфейс пользователя

домашнее задание, примерные вопросы:

Разработать GUI для просмотра нескольких графических окон. Указание: создать объект РорирМепи, перечислить несколько характерных примеров (график функции одной переменной, эффект comet, график поверхности и пр.). Для вывода графического окна создать объект типа axes. В программе воспользоваться оператором выбора switch.

Тема 15. Численные методы решения дифференциальных уравнений

домашнее задание, примерные вопросы:

Решить краевую задачу: y'' - y = x; y(0) = 0, y(1) = 1.

Тема 16. Решение задач теории упругости с помощью системы Matllab

домашнее задание, примерные вопросы:

Решить задачу изгиба тонкой прямоугольной пластины при условии шарнирного опирания краев. При решении опираться решение с другими краевыми условиями. Сравнить значения максимального прогиба в центре пластины в первом и во втором случае. Изобразить изогнутую поверхность пластины средствами системы Matlab.

Тема 17. Задача устойчивости прямоугольной пластины под действием динамического сжатия

контрольная работа, примерные вопросы:

Рассчитать на динамическую устойчивость прямоугольную пластину под действием всестороннего сжатия. Процесс потери устойчивости изобразить на экране дисплея, методом графического анализа определить момент потери устойчивости. Расчет и графический анализ производить в системе MATLAB с использованием изученных методов

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Предусмотрена сдача зачета.

ВОПРОСЫ К ЗАЧЕТУ

- 1. Классификация внешних сил
- 2. Внутренние усилия и моменты
- 3. Вывод уравнений равновесия
- 4. Дифференциальные уравнения равновесия (одномерная задача)
- 5. Зависимость деформации от нагрузки, закон Гука
- 6. Механические свойства материала, коэффициент Пуассона
- 7. Перемещения при осевой деформации стержня
- 8. Зависимость между компонентами тензора деформаций и составляющими перемещения. Уравнения Коши
- 9. Условия совместности деформаций
- 10. Основные уравнения теории упругости
- 11. Прямая и обратная задачи теории упругости, пути их решения
- 12. Примеры плоских задач теории упругости
- 13. Работа в режиме прямых вычислений
- 14. Программирование в системе Matlab, работа с файлами

7.1. Основная литература:

- 1.Поршнев С.В. Компьютерное моделирование физических процессов в пакете MATLAB: учебное пособие: [для студентов вузов, обучающихся по специальностям Математика, Информатика, Физика] / С.В.Поршнев.?Издание 2-е, исправленное.?Санкт-Петербург [и др.]: Лань, 2011.?736 с.
- 2.Поршнев С.В. Компьютерное моделирование физических процессов в пакете MATLAB: учебное пособие: [для студентов вузов, обучающихся по специальностям Математика, Информатика, Физика] / С.В. Поршнев.?Издание 2-е, исправленное.?Санкт-Петербург [и др.]: Лань, 2011.?736 с. http://e.lanbook.com/books/element.php?pl1 id=650
- 3. Варданян Г. С. Сопротивление материалов с основами теории упругости и пластичности: Уч. / В.И.Андреев и др.; Под ред. Г.С.Варданяна, Н.М.Атарова. 2-е изд., испр. и доп. М.: ИНФРА-М, 2014. 638 с.

http://znanium.com/bookread.php?book=448729

- 4.. Волосухин В. А. Сопротивление материалов: Учебник / В.А. Волосухин, В.Б. Логвинов, С.И. Евтушенко. 5-е изд. М.: ИЦ РИОР: НИЦ ИНФРА-М, 2014. 543 с.
- http://znanium.com/bookread.php?book=390023
- 5. Балдин К. В. Математическое программирование [Электронный ресурс] : Учебник / К. В. Балдин, Н. А. Брызгалов, А. В. Рукосуев; Под общ. ред. д.э.н., проф. К. В. Балдина. 2-е изд. М.: Издательско-торговая корпорация "Дашков и К-", 2013. 220 с. http://znanium.com/bookread.php?book=415097

7.2. Дополнительная литература:

1. Бахтиева Л.У. Самостоятельные работы по специальному курсу 'Математические модели теории упругости' [Текст: электронный ресурс]: методическое пособие / Л. У. Бахтиева; Казан. федер. ун-т.?Электронные данные (1 файл: 0,74 Мб).?Б.м.: Б.и., Б.г..?Загл. с экрана.?Режим доступа: открытый .? URL:http://libweb.ksu.ru/ebooks/09-IVMIT/09 64 2012 000089.pdf

7.3. Интернет-ресурсы:

Компьютерное моделирование - http://e.lanbook.com/books/element.php?pl1_id=650 Математические модели теории упругости - http://znanium.com/bookread.php?book=390023 Математическое программирование - http://znanium.com/bookread.php?book=415097 Самостоятельные работы - http://libweb.ksu.ru/ebooks/09-IVMIT/09_64_2012_000089.pdf Сопротвление материалов - http://znanium.com/bookread.php?book=448729

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Математические модели теории упругости" предполагает использование следующего материально-технического обеспечения:

компьютерный класс

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.04 "Прикладная математика" и профилю подготовки Математическое моделирование .

Автор(ы)	•	
Бахтиева	ι Л.У	
"_"_	201 г.	
_		
Рецензен	нт(ы):	
Плещинс	кий Н.Б	
"_"	201 г.	