МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

УТВЕРЖДАЮ

Программа дисциплины

Абстрактные методы численного анализа Б1.В.ДВ.7

Направление подготовки: 01.03.04 - Прикладная математика					
Профиль подготовки: Математическое моделирование					
Квалификация выпускника: бакалавр					
Форма обучения: очное					
Язык обучения: русский					
Автор(ы):					
Павлова М.Ф.					
Рецензент(ы):					
Задворнов О.А.					
СОГЛАСОВАНО:					
Заведующий(ая) кафедрой: Задворнов О. А.					
Протокол заседания кафедры No от "" 201г					
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:					
Протокол заседания УМК No от "" 201г					
Регистрационный No					
Казань					
2017					

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Павлова М.Ф. кафедра вычислительной математики отделение прикладной математики и информатики , Maria.Pavlova@kpfu.ru

1. Цели освоения дисциплины

В специальном курсе лекций рассматриваются основные принципы построения приближенных схем, которые используются при аппроксимации граничных задач для дифференциальных уравнений и интегральных уравнений. Излагается абстрактный подход, основанный на общей теории линейных операторов. В качестве примеров применения теории аппроксимации и интерполяции приводятся интегральные уравнения Фредгольма, бесконечные системы линейных алгебраических уравнений, задача Коши и краевые задачи для уравнений математической физики, а также экстремальные задачи.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.7 Дисциплины (модули)" основной образовательной программы 01.03.04 Прикладная математика и относится к дисциплинам по выбору. Осваивается на 3 курсе, 6 семестр.

Дисциплина 'Абстрактные методы численного анализа' относится к профессиональному циклу дисциплин, предназначена для студентов 3 курса (6 семестр). Базируется на знаниях, полученных в рамках дисциплин 'Математический анализ', 'Дифференциальные уравнения', 'Уравнения математической физики', 'Численные методы'.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции				
ПК-10 (профессиональные компетенции)	Готовность применять математический аппарат для решения поставленных задач, способностью применить соответствующую процессу математическую модель и проверить ее адекватность, провести анализ результатов моделирования, принять решение на основе полученных				
ПК-12 (профессиональные компетенции)	Способность самостоятельно изучать новые разделы фундаментальной математики				
ПК-9 (профессиональные компетенции)	Способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, готовностью использовать для их решения соответствующий естественнонаучный аппарат				

В результате освоения дисциплины студент:

1. должен знать:

основные принципы построения и исследования приближенных схем;

2. должен уметь:

выбирать оптимальные варианты выбора способов аппроксимации операторных уравнений;

3. должен владеть:

приемами доказательства сходимости приближенных схем;

4. должен демонстрировать способность и готовность:

навыки численного решения граничных задач для дифференциальных уравнений и интегральных уравнений

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 5 зачетных(ые) единиц(ы) 180 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 6 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
1.	Тема 1. Введение в теорию абстрактных схем	6	1-2	0	0	8	Письменное домашнее задание
2.	Тема 2. Операторы и операторные уравнения	6	3-4	0	0	8	Письменное домашнее задание
3.	Тема 3. Условия единственности решений	6	5-6	0	0	8	Контрольная работа
4.	Тема 4. Интегральные уравнения Фредгольма 2-го рода	6	7-8	0	0	8	Письменное домашнее задание
5.	Тема 5. Существование решений	6	9-10	0	0	8	Письменное домашнее задание
6.	Тема 6. Сходимость приближенной схемы	6	11-12	0	0	8	
7.	Тема 7. Метод усечения БСЛАУ	6	13-14	0	0	8	Письменное домашнее задание
8.	Тема 8. Устойчивость приближенной схемы	6	15-16	0	0	8	Письменное домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	лабораторные работы	
9.	Тема 9. Нелинейные приближенные схемы	6	17	0	0	4	Письменное домашнее задание
10.	Тема 10. Аппроксимация экстремальных задач	6	18	0	0		Контрольная работа
	Тема . Итоговая форма контроля	6		0	0	0	Экзамен
	Итого			0	0	72	

4.2 Содержание дисциплины

Тема 1. Введение в теорию абстрактных схем

лабораторная работа (8 часа(ов)):

Параметрические семейства задач. Приближенные методы решения дифференциальных и интегральных уравнений

Тема 2. Операторы и операторные уравнения

лабораторная работа (8 часа(ов)):

Аппроксимация и интерполяция. Существование и единственность решения операторных уравнений. Обратимость линейных операторов. Априорные оценки погрешности

Тема 3. Условия единственности решений

лабораторная работа (8 часа(ов)):

Обратимость слева аппроксимирующего оператора. Обратимость слева точного оператора

Тема 4. Интегральные уравнения Фредгольма 2-го рода

лабораторная работа (8 часа(ов)):

Метод механических квадратур. Метод моментов (метод Галеркина). Распределения (обобщенные функции). Преобразование Фурье: S'-теория

Тема 5. Существование решений

лабораторная работа (8 часа(ов)):

Квазирешения. Условия обратимости справа линейных операторов. Оценка невязок точного и аппроксимирующего уравнений

Тема 6. Сходимость приближенной схемы

лабораторная работа (8 часа(ов)):

S-сходимость и T-сходимость последовательности аппроксимирующих решений к точному решению

Тема 7. Метод усечения БСЛАУ

лабораторная работа (8 часа(ов)):

Усечение в пространствах со сферической нормой. Усечение в пространствах с кубической нормой

Тема 8. Устойчивость приближенной схемы

лабораторная работа (8 часа(ов)):

Переопределенные граничные задачи для уравнения Гельмгольца в полуполосе. Дифракция на вертикальной перегородке

Тема 9. Нелинейные приближенные схемы

лабораторная работа (4 часа(ов)):

Достаточные условия сходимости приближенной схемы

Тема 10. Аппроксимация экстремальных задач *пабораторная работа (4 часа(ов)):*

Двойственные пространства и операторы. Аппроксимация двойственности. Бесконечномерное линейное программирование

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Введение в теорию абстрактных схем	6	1-2	подготовка домашнего 8 задания		домашнее задание
2.	Тема 2. Операторы и операторные уравнения	6	3-4	подготовка домашнего задания	8	домашнее задание
3.	Тема 3. Условия единственности решений	6		подготовка к контрольной работе	8	контрольная работа
4.	Тема 4. Интегральные уравнения Фредгольма 2-го рода	6	7-8	подготовка домашнего задания	8	домашнее задание
5.	Тема 5. Существование решений	6		подготовка домашнего задания	8	домашнее задание
6.	Тема 6. Сходимость приближенной схемы	6		подготовка к контрольной точке	8	контрольная точка
7.	Тема 7. Метод усечения БСЛАУ	6		подготовка домашнего задания	8	домашнее задание
8.	Тема 8. Устойчивость приближенной схемы	6		подготовка домашнего задания	8	домашнее задание
9.	Тема 9. Нелинейные приближенные схемы	6	17	подготовка домашнего задания	4	домашнее задание
10.	Тема 10. Аппроксимация экстремальных задач	6	18	подготовка к контрольной работе	4	контрольная работа
	Итого				72	

5. Образовательные технологии, включая интерактивные формы обучения

Активные и интерактивные формы проведения занятий в сочетании с внеаудиторной работой.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение в теорию абстрактных схем

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Параметрические семейства задач. Приближенные методы решения дифференциальных и интегральных уравнений

Тема 2. Операторы и операторные уравнения

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Аппроксимация и интерполяция. Существование и единственность решения операторных уравнений. Обратимость линейных операторов. Априорные оценки погрешности

Тема 3. Условия единственности решений

контрольная работа, примерные вопросы:

Проверка знаний по темам: Обратимость слева аппроксимирующего оператора. Обратимость слева точного оператора

Тема 4. Интегральные уравнения Фредгольма 2-го рода

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Метод механических квадратур. Метод моментов (метод Галеркина). Распределения (обобщенные функции). Преобразование Фурье: S'-теория

Тема 5. Существование решений

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Квазирешения. Условия обратимости справа линейных операторов. Оценка невязок точного и аппроксимирующего уравнений

Тема 6. Сходимость приближенной схемы

контрольная точка, примерные вопросы:

Проверка знаний по теме: S-сходимость и T-сходимость последовательности аппроксимирующих решений к точному решению

Тема 7. Метод усечения БСЛАУ

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Усечение в пространствах со сферической нормой. Усечение в пространствах с кубической нормой

Тема 8. Устойчивость приближенной схемы

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Переопределенные граничные задачи для уравнения Гельмгольца в полуполосе. Дифракция на вертикальной перегородке

Тема 9. Нелинейные приближенные схемы

домашнее задание, примерные вопросы:

Изучение литературы, выполнение упражнений по темам: Двойственные пространства и операторы. Аппроксимация двойственности. Бесконечномерное линейное программирование

Тема 10. Аппроксимация экстремальных задач

контрольная работа, примерные вопросы:

Проверка знаний по теме: Достаточные условия сходимости приближенной схемы

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Вопросы для экзамена:

- 1. Понятие абстрактных схем
- 2. Операторы
- 3. Операторные уравнения
- 4. Условия единственности решений

- 5. Интегральные уравнения Фредгольма 2-го рода
- 6. Существование решений
- 7. Сходимость приближенной схемы
- 8. БСЛАУ
- 9. Метод усечения
- 10. Устойчивость приближенной схемы
- 11. Нелинейные приближенные схемы
- 12. Аппроксимация экстремальных задач
- 13. Аппроксимация и интерполяция
- 14. Априорные оценки погрешности
- 15. Метод моментов (метод Галеркина)
- 16. Оценка невязок точного и аппроксимирующего уравнений

7.1. Основная литература:

- 1.Сидоров, Анатолий Михайлович. Функциональный анализ: учебное пособие / А. М. Сидоров.-Казань: Казанский университет, 2010. 139 с.; 21.-Библиогр.: с. 4 (4 назв.).-ISBN 978-5-98180-834-0.
- 2. Амосов А.А. Вычислительные методы. / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова 4-е изд., стер. Спб.: Издательство 'Лань', 2014. 672 с. ISBN 978-5-8114-1623-3, http://lanbook.com/books/element.php?pl1 cid=50&pl1 id=1045
- 3. Срочко В.А. Численные методы: Учебное пособие/ В.А. Срочко СПб.: Издательство 'Лань', 2010. 208 с.

ISBN 978-5-8114-1014-9 e.lanbook.com http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=378

4. Демидович Б.П. Основы вычислительной математики: учебное пособие / Демидович Б.П., Марон И.А. - 8-е изд., стер. - СПб.: Издательство 'Лань', 2011. - 672 с.

ISBN 978-5-8114-0695-1 http://lanbook.com/books/element.php?pl1_cid=50&pl1_id=721

5. Пантина И. В. Вычислительная математика: учебное пособие / И. В. Пантина, А. В. Синчуков. - 2-е изд., перераб. и доп. - М.: МФПУ Синергия, 2012. - 176 с. http://www.znanium.com/go.php?id=451160

7.2. Дополнительная литература:

- 1. Треногин В.А. Функциональный анализ. М.: Наука, 1980. 495 с.
- 2. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1984. 752 с.
- 3. Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1980. 520 с.

7.3. Интернет-ресурсы:

www.abcpnb.ru/RUS/Resour/AbsShe/z.pdf - www.abcpnb.ru/RUS/Resour/AbsShe/z.pdf Амосов А.А. Вычислительные методы. / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова 4-е изд., стер. - Спб.: Издательство 'Лань', 2014. - 672 с. ISBN 978-5-8114-1623-3 - http://lanbook.com/books/element.php?pl1_cid=50&pl1_id=1045

Демидович Б.П. Основы вычислительной математики: учебное пособие / Демидович Б.П., Марон И.А. - 8-е изд., стер. - СПб.: Издательство 'Лань', 2011. - 672 с. ISBN 978-5-8114-0695-1 - http://lanbook.com/books/element.php?pl1 cid=50&pl1 id=721

Пантина И. В. Вычислительная математика: учебное пособие / И. В. Пантина, А. В. Синчуков. - 2-е изд., перераб. и доп. - М.: МФПУ Синергия, 2012. - 176 с. - http://www.znanium.com/go.php?id=451160

Срочко В.А. Численные методы: Учебное пособие/ В.А. Срочко - СПб.: Издательство 'Лань', 2010. - 208 с. ISBN 978-5-8114-1014-9 -

http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=378

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Абстрактные методы численного анализа" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Лекции и лабораторные занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом (маркером).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.04 "Прикладная математика" и профилю подготовки Математическое моделирование .

Программа дисциплины "Абстрактные методы численного анализа"; 01.03.04 Прикладная математика; профессор, д.н. (профессор) Павлова М.Ф.

Автор(ы	ı):	
Павлова	а М.Ф	
""	201 г.	
Рецензе	ент(ы):	
Задворн	нов О.А.	
""	201 г.	