МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" Институт физики

УT	BE	РЖ	ДΑ	Ю

Проректор по образовательной деятельности КФУ проф. Таюрский Д.А.

Программа дисциплины

Лазерные материалы Б1.В.ДВ.6

Направление подготовки: <u>03.04.03 - Радиофизика</u> Профиль подготовки: <u>Физика магнитных явлений</u>

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2016

Автор(ы): <u>Юсупов Р.В.</u> **Рецензент(ы)**: <u>Никитин С.И.</u>

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Тагиров М. С. Протокол заседания кафедры No ___ от "___" _____ 20__г. Учебно-методическая комиссия Института физики: Протокол заседания УМК No ___ от "___" _____ 20__г.

> Казань 2017

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине/ модулю
- 4.2. Содержание дисциплины
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 6.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения
- 6.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 6.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций
- 7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
- 7.1. Основная литература
- 7.2. Дополнительная литература
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

Программу дисциплины разработал(а)(и) старший научный сотрудник, к.н. (доцент) Юсупов Р.В. (Центр квантовых технологий, КФУ), Roman.Yusupov@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Выпускник, освоивший дисциплину, должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции		
ОПК-3	Способность к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимых для решения научно-исследовательских задач		
ПК-2	Способность самостоятельно ставить научные задачи в области физики и радиофизики (в соответствии с профилем подготовки) и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта		

Выпускник, освоивший дисциплину:

Должен знать:

- основы физики различных типов конденсированных активных лазерных сред: кристаллов и стекол, активированных редкоземельными ионами, кристаллов активированных ионами группы железа, кристаллов с центрами окраски;
- физику и свойства нелинейно-оптических и электрооптических кристаллов;
- основные принципы подбора активной лазерной среды для лазеров, работающих при непрерывной и импульсной накачке, в непрерывном режиме, режимах свободной генерации, модуляции добротности и синхронизации мод;
- основные подходы для целенаправленного поиска новых лазерных сред.

Должен уметь:

- применять полученные знания для работы с различными типами лазеров и лазерных систем;
- использовать методы физических исследований материалов квантовой электроники;
- использовать полученные знания для разработки лазерных систем различного назначения, учитывая свойства активных лазерных сред, нелинейных и электрооптических кристаллов.

Должен владеть:

- навыками работы с лабораторными макетами различных лазеров, модуляторов и дефлекторов, а также контрольно-измерительной аппаратурой;
- навыками расчета простейших лазерных систем;
- навыками проведения физического эксперимента.

Должен демонстрировать способность и готовность:

- применять полученные знания для работы с различными типами лазеров и лазерных систем;
- пользоваться основными измерительными приборами, используемыми в квантовой электронике, измерять основные параметры лазерного излучения, ставить и решать простейшие экспериментальные задачи по квантовой электронике;
- использовать методы физических исследований материалов квантовой электроники.

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.6 Дисциплины (модули)" основной профессиональной образовательной программы 03.04.03 "Радиофизика (Физика магнитных явлений)" и относится к дисциплинам по выбору. Осваивается на 2 курсе, в 3 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы), 108 часа(ов).

Контактная работа - 42 часа(ов), в том числе лекции - 28 часа(ов), практические занятия - 14 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 66 часа (ов).

Контроль (зачёт / экзамен) - 0 часа(ов).

Форма промежуточного контроля дисциплины: зачет в 3 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине/ модулю

N		Семестр	(в часах)			Самостоятельная работа
	модуля		Лекции	Практические занятия	Лабораторные работы	-
1.	Тема 1. Физико-химические параметры лазерных материалов	3	4	0	0	10
2.	Тема 2. Лазерные кристаллы и стекла, активированные редкоземельными ионами	3	4	2	0	10
3.	Тема 3. Процессы трансформации энергии возбуждения в активированных материалах	3	4	2	0	8
4.	Тема 4. Кристаллы для перестраиваемых лазеров, активированные ионами группы железа	3	4	4	0	10
5.	Тема 5. Кристаллы с центрами окраски	3	4	2	0	8
6.	Тема 6. Активные среды для лазеров с полупроводниковой накачкой	3	4	2	0	10
7.	Тема 7. Нелинейно-оптические и электрооптический кристаллы	3	4	2	0	10
	Итого		28	14	0	66

4.2 Содержание дисциплины

Тема 1. Физико-химические параметры лазерных материалов

Оптические характеристики (пропускание на рабочей длине волны лазера, оптическая однородность). Теплофизические характеристики (предельная энергия накачки, термическая линза). Радиационная устойчивость. Сравнительный анализ разных кристаллических сред.

Тема 2. Лазерные кристаллы и стекла, активированные редкоземельными ионами

Кристаллы и стекла, активированные ионами Nd3+. Эрбиевые активные среды. Кристаллы и стекла, активированные иттербием. Среды для генерации в УФ диапазоне на межконфигурационных переходах.

Тема 3. Процессы трансформации энергии возбуждения в активированных материалах

Внутрицентровые безызлучательные переходы. Безызлучательная передача энергии электронных возбуждений между оптическими центрами и её проявления. Тушение и сенсибилизация люминесценции. Кросс-релаксация, ап-конверсия. Миграция возбуждений. Микроскопическая модель передачи энергии. Экспериментальные и теоретические методы исследования миграции. Примеры многоуровневых функциональных схем лазеров на полиактивированных материалах.

Тема 4. Кристаллы для перестраиваемых лазеров, активированные ионами группы железа

Введение в физику вибронных лазеров. Уровни энергии ионов группы железа в кубическом кристаллическом поле (диаграмма Сугано-Танабе, сильное и слабое кристаллические поля). Сечение усиления для электронно-колебательных переходов. Поглощение из возбужденного состояния (примеры).

Тема 5. Кристаллы с центрами окраски

Физика материалов с лазерно-активными центрами окраски. Методы создания центров окраски в диэлектрических кристаллах. Схема энергетических уровней F-центра. Различные виды центров окраски (F-центр, FA-центр, F2-центр, F3-центр, T10-центр).

Тема 6. Активные среды для лазеров с полупроводниковой накачкой

Основные тенденции развития твердотельных лазеров см полупроводниковой накачкой. Одночастотные чип-лазеры (линейные и кольцевые чип-лазеры), лазеры на микросферах. Слэб-лазеры, дисковые лазеры. Мощные твердотельные лазеры, волоконные лазеры.

Тема 7. Нелинейно-оптические и электрооптический кристаллы

Линейный электрооптический эффект и характеристики электрооптического качества кристаллов. Поляризационно-оптические затворы и модуляторы света.

Распространение света в нелинейных оптических средах. Реализация условий фазового синхронизма. Эффективные коэффициенты нелинейности. Расчет преобразователя частоты.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года N301).

Письмо Министерства образования Российской Федерации N14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Положение от 24 декабря 2015 г. ♦ 0.1.1.67-06/265/15 "О порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Положение N 0.1.1.67-06/241/15 от 14 декабря 2015 г. "О формировании фонда оценочных средств для проведения текущей, промежуточной и итоговой аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Положение N 0.1.1.56-06/54/11 от 26 октября 2011 г. "Об электронных образовательных ресурсах федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/66/16 от 30 марта 2016 г. "Разработки, регистрации, подготовки к использованию в учебном процессе и удаления электронных образовательных ресурсов в системе электронного обучения федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/11/16 от 25 января 2016 г. "О балльно-рейтинговой системе оценки знаний обучающихся в федеральном государственном автономном образовательном учреждении высшего образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/91/13 от 21 июня 2013 г. "О порядке разработки и выпуска учебных изданий в федеральном государственном автономном образовательном учреждении высшего профессионального образования "Казанский (Приволжский) федеральный университет""

6. Фонд оценочных средств по дисциплине (модулю)

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения

Этап	Форма контроля	Оцениваемые компетенции	Темы (разделы) дисциплины		
Семе	еместр 3				
	Текущий контроль				
1	Презентация	ОПК-3 , ПК-2	2. Лазерные кристаллы и стекла, активированные редкоземельными ионами 3. Процессы трансформации энергии возбуждения в активированных материалах 4. Кристаллы для перестраиваемых лазеров, активированные ионами группы железа 5. Кристаллы с центрами окраски 6. Активные среды для лазеров с полупроводниковой накачкой 7. Нелинейно-оптические и электрооптический кристаллы		
	Зачет	ОПК-3, ПК-2			

6.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Форма	Критерии оценивания					
контроля	Отлично	Хорошо	Удовл.	Неуд.	Этап	
Семестр 3						
Текущий кон	гроль					
Презентация	Превосходный уровень владения материалом. Высокий уровень доказательности, наглядности, качества преподнесения информации. Степень полноты раскрытия материала и использованные решения полностью соответствуют	Средний уровень доказательности, наглядности, качества преподнесения информации. Степень полноты раскрытия материала и использованные решения в основном соответствуют	наглядности, качества	Неудовлетворительный уровень владения материалом. Неудовлетворительный уровень доказательности, наглядности, качества преподнесения информации. Степень полноты раскрытия материала и использованные решения не соответствуют задачам презентации. Использованные источники и методы не соответствуют поставленным задачам. Не зачтено	1	
Зачет	Обучающийся обнаружил знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справился с выполнением заданий, предусмотренных программой дисциплины.		пробелы в знаниях осн учебно-программного м принципиальные ошиб предусмотренных прог способен продолжить приступить по окончан профессиональной дея	программного материала, допустил иальные ошибки в выполнении отренных программой заданий и не н продолжить обучение или ить по окончании университета к сиональной деятельности без тельных занятий по соответствующей		

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Семестр 3

Текущий контроль

1. Презентация

Тема 2, 3, 4, 5, 6, 7

Предлагаемые темы презентаций:

- 1. Кристаллические среды для высокоэффективных неодимовых лазеров (выбирается одна из наиболее широко используемых лазерных сред: GGG:Nd, GSGG:Nd, YAG:Nd и рассматриваются ее преимущества и недостатки для разных типов лазеров).
- 2. Лазер на кристалле иттрийалюминеевого граната, активированного ионами Er3+.
- 3. Лазеры на стекле, активированном ионами Yb3+ и Er3+. Волоконные лазеры.
- 4. Перестраиваемые лазеры УФ-диапазона на фторидных кристаллах, активированных ионами Се3+.
- 5. Сенсибилизация люминесценции редкоземельных ионов ионами Cr3+ в кристаллах на основе гадолиний-скандий-галиевого граната.
- 6. Кросс-релаксационный лазер на кристалле YAG:Er.
- 7. Механизмы передачи энергии электронного возбуждения (диполь-дипольный, диполь-квадрупольный).
- 8. Кооперативная сенсибилизация люминесценции (примеры).
- 9. Лазер на кристалле александрита.
- 10. Перспективные фторидные лазерные кристаллы, активированные ионами Cr3+ (рассмотреть на примере одного из кристаллов: KZnF3, LiCaAlF6, LiSrAlF6).
- 11. Уникальные лазерные характеристики кристалла корунда, активированного ионами Ті3+.
- 12. Перестраиваемый лазер ИК-диапазона на кристалле MgF2:Co2+.
- 13. Методы измерения спектров поглощения из возбужденного состояния, их идентификация на примере кристаллов, активированных ионами Cr3+.
- 14. Схемы резонаторов перестраиваемых лазеров.
- 15. Лазеры на центрах окраски в кристалле LiF (на примере F2+ или F2- центров).
- 16. Техническая реализация лазеров с центрами окраски лазерной накачкой.
- 17. Лазеры на центрах окраски с ламповой накачкой.
- 18. Пассивные модуляторы добротности на кристаллах с центрами окраски (примеры).
- 19. Наиболее распространенные активные среды для твердотельных лазеров с полупроводниковой накачкой.
- 20. Спектроскопические и генерационные характеристики кристалла YAG:Nd при полупроводникой накачке.
- 21. Спектроскопические и генерационные характеристики ванадата иттрия YVO4:Nd при полупроводникой накачке.
- 22. Спектроскопические и генерационные характеристики лантан-скандиевого бората LSB:Nd при полупроводникой накачке.
- 23. Композитные активные элементы для лазеров с полупроводниковой накачкой.
- 24.Композитные лазерные элементы с пассивной модуляцией добротности.
- 25. Нелинейные оксидные кристаллы, влияние различных факторов на их применение в качестве нелинейно-оптических преобразователей.
- 26. Свойства и методы синтеза кристаллов группы КDР.
- 27. Уникальный свойства кристаллов иодата лития и титанилфосфата калия.
- 28. Нелинейно-оптические преобразователи на основе боратов.

Зачет

Вопросы к зачету

Вопросы на зачет:

- 1. Оптические характеристики (пропускание на рабочей длине волны лазера, оптическая однородность). Теплофизические характеристики (предельная энергия накачки, термическая линза). Радиационная устойчивость. Сравнительный анализ разных кристаллических сред.
- 2. Перспективные фторидные лазерные кристаллы, активированные ионами Cr3+.
- 3. Кристаллы и стекла, активированные ионами Nd3+.
- 4. Уникальные лазерные характеристики кристалла корунда, активированного ионами Ті3+.
- 5. Эрбиевые активные среды.
- 6. Перестраиваемый лазер ИК-диапазона на кристалле MgF2:Co2+.
- 7. Кристаллы и стекла, активированные иттербием.
- 8. Схемы резонаторов перестраиваемых лазеров.
- 9. Среды для генерации в УФ диапазоне на межконфигурационных переходах.
- 10. Физика материалов с лазерно-активными центрами окраски. Методы создания центров окраски в диэлектрических кристаллах. Схема энергетических уровней F-центра.
- 11. Внутрицентровые безызлучательные переходы. Безызлучательная передача энергии электронных возбуждений между оптическими центрами и её проявления.

- 12. Лазеры на центрах окраски в кристалле LiF.
- 13. Тушение и сенсибилизация люминесценции. Кросс-релаксация, ап-конверсия. Миграция возбуждений.
- 14. Пассивные модуляторы добротности на кристаллах с центрами окраски (примеры).
- 15. Микроскопическая модель передачи энергии. Экспериментальные и теоретические методы исследования миграции.
- 16. Одночастотные чип-лазеры (линейные и кольцевые чип-лазеры), лазеры на микросферах.
- 17. Примеры многоуровневых функциональных схем лазеров на полиактивированных материалах.
- 18. Слэб-лазеры, дисковые лазеры.
- 19. Примеры многоуровневых функциональных схем лазеров на полиактивированных материалах.
- 20. Волоконные лазеры.
- 21. Механизмы передачи энергии электронного возбуждения (диполь-дипольный, диполь-квадрупольный).
- 22. Наиболее распространенные активные среды для твердотельных лазеров с полупроводниковой накачкой.
- 23. Кооперативная сенсибилизация люминесценции (примеры).
- 24. Композитные активные элементы для лазеров с полупроводниковой накачкой. Композитные лазерные элементы с пассивной модуляцией добротности.
- 25. Уровни энергии ионов группы железа в кубическом кристаллическом поле (диаграмма Сугано-Танабе, сильное и слабое кристаллические поля). Сечение усиления для электронно-колебательных переходов.
- 26. Линейный электрооптический эффект и характеристики электрооптического качества кристаллов. Поляризационно-оптические затворы и модуляторы света.
- 27. Поглощение из возбужденного состояния (примеры).
- 28. Распространение света в нелинейных оптических средах. Реализация условий фазового синхронизма.
- Эффективные коэффициенты нелинейности. Расчет преобразователя частоты.
- 29. Лазер на кристалле александрита.
- 30. Нелинейные оксидные кристаллы, влияние различных факторов на их применение в качестве нелинейно-оптических преобразователей.

6.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В КФУ действует балльно-рейтинговая система оценки знаний обучающихся. Суммарно по дисциплине (модулю) можно получить максимум 100 баллов за семестр, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов.

Для зачёта:

56 баллов и более - "зачтено".

55 баллов и менее - "не зачтено".

Для экзамена:

86 баллов и более - "отлично".

71-85 баллов - "хорошо".

56-70 баллов - "удовлетворительно".

55 баллов и менее - "неудовлетворительно".

Форма контроля	Процедура оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	Этап	Количество баллов
Семестр 3	•		
Текущий кон	троль		
Презентация	Обучающиеся выполняют презентацию с применением необходимых программных средств, решая в презентации поставленные преподавателем задачи. Обучающийся выступает с презентацией на занятии или сдаёт её в электронном виде преподавателю. Оцениваются владение материалом по теме презентации, логичность, информативность, способы представления информации, решение поставленных задач.		50
		Всего:	50
Зачет	Зачёт нацелен на комплексную проверку освоения дисциплины. Обучающийся получает вопрос (вопросы) либо задание (задания) и время на подготовку. Зачёт проводится в устной, письменной или компьютерной форме. Оценивается владение материалом, его системное освоение, способность применять нужные знания, навыки и умения при анализе проблемных ситуаций и решении практических заданий.		50

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1 Основная литература:

- 1. Демтрёдер В., Современная лазерная спектроскопия (уч.пособие)/В.Демтрёдер,(пер. с англ.) Долгопрудный: Интеллект,2014. 1071с.
- 2. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения: Учебное пособие в 2 т., Т.1: Долгопрудный, ООО Издательский дом "Интелект", 2012 г. 760 с.
- 3. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения: Учебное пособие в 2 т., Т.2: Долгопрудный, ООО Издательский дом "Интелект", 2012 г. 764 с.

7.2. Дополнительная литература:

- 1. Константинова А.Ф. и др. Оптические свойства кристаллов, Минск.: "Наука и техника", 1995 302 с.
- 2. Блистанов А.А. Кристаллы квантовой и нелинейной оптики, М.: "МИСИС", 2000 432 с.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

American Physical Society (APS) - http://libress.kpfu.ru/proxy/http://pubs.acs.org Elsevier (Science Direct) - http://libress.kpfu.ru/proxy/http://www.sciencedirect.com/Scopus - http://libress.kpfu.ru/proxy/http://www.scopus.com/home.url Сетевые ресурсы библиотеки КФУ - http://portal.kpfu.ru/main_page?p_sub=8224 электронно-библиотечная система Znanium - http://znanium.com

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Самостоятельная работа в течение семестра ведется в следующих формах: (1) - повторение пройденного материала и подготовка к устным опросам; (2) - обобщающая подготовка к промежуточному коллоквиуму по пройденному за примерно половину семестра материалу; (3) - подготовка презентаций по предложенным темам для представления на суд преподавателя и студентов.

Повторение пройденного материала служит для закрепления знаний и их расширения с использованием рекомендованной для изучения курса основной и дополнительной литературой.

Коллоквиум проводится в виде письменной работы, в которой контролируется освоение материала студентами. Эта форма контроля является основной в течение семестра, где можно набрать максимум баллов (30).

Подготовка презентаций осуществляется с использованием соответствующих программ (Microsoft Powerpoint либо аналогичная). Предпочтительным форматом презентации является межплатформенный формат PDF.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Освоение дисциплины "Лазерные материалы" предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows Professional 7 Russian

Пакет офисного программного обеспечения Microsoft Office 2010 Professional Plus Russian Браузер Google Chrome

Adobe Reader XI

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "БиблиоРоссика", доступ к которой предоставлен обучающимся. В ЭБС "БиблиоРоссика "представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Освоение дисциплины "Лазерные материалы" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора. автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия. презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий:
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 03.04.03 "Радиофизика" и магистерской программе Физика магнитных явлений.

