МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Рост кристаллов Б1.В.ДВ.11

Направление подготовки: <u>03.03.03 - Радиофизика</u> Профиль подготовки: <u>Физика магнитных явлений</u>

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):
Марисов М.А.
Рецензент(ы):
Мухамедшин И.Р.

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Тагиров М. С.		
Протокол заседания кафедры No от ""	201_	
Учебно-методическая комиссия Института физики:		
Протокол заседания УМК No от ""	201г	

Регистрационный No 6125519

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) старший научный сотрудник, к.н. Марисов М.А. НИЛ магнитной радиоспектроскопии и квантовой электроники им. С.А. Альтшулера Кафедра квантовой электроники и радиоспектроскопии, Mikhail.Marisov@kpfu.ru

1. Цели освоения дисциплины

Целью освоения дисциплины (модуля) "Рост кристаллов" является изучение основных методов получения монокристаллических объектов, закономерностей связывающих свойства кристаллов и процессы их роста.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б3.ДВ.6 Профессиональный" основной образовательной программы 011800.62 Радиофизика и относится к дисциплинам по выбору. Осваивается на 3 курсе, 6 семестр.

Дисциплина "Рост кристаллов" относится к профессиональному циклу. Она имеет как фундаментальное, так и прикладное значение в системе радиофизического образования.

Эта дисциплина связана со следующими дисциплинами: оптика, магнитный резонанс, рост кристаллов, материаловедение, кристаллография.

Освоение дисциплины "Рост кристаллов" необходимо для теоретической и практической подготовки по другими дисциплинам: основы теории оптических спектров и спектров магнитного резонанса, физика конденсированных сред.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
пк-1	способностью использовать базовые теоретические знания (в том числе по дисциплинам профилизации) для решения профессиональных задач;
пк-2	способностью применять на практике базовые профессиональные навыки
ПК-3 (профессиональные компетенции)	способностью понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры и оборудования.
ок- 3	способностью к постановке цели и выбору путей ее достижения, настойчивость в достижении цели
ок- 8	способностью к овладению базовыми знаниями в области математики и естественных наук, их использованию в профессиональной деятельности
ок-10	способностью самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии
ок-12	способностью к правильному использованию общенаучной и специальной терминологии

В результате освоения дисциплины студент:

1. должен знать:

методы выращивания кристаллов, их характерные особенности, а также области применения различных методов роста.

2. должен уметь:

Работать с литературой. Использовать данные фазовых диаграмм, имеющихся в литературе. Определять возможность получения монокристаллов требуемого соединения.

3. должен владеть:

знаниями об основных кристаллохимических закономерностях и их связи со структурой кристалла и условиями его получения

4. должен демонстрировать способность и готовность:

Работать с литературой. Использовать данные фазовых диаграмм, имеющихся в литературе. Определять возможность получения монокристаллов требуемого соединения.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины: зачет в 6 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы	
	Модуля	-		Лекции		Лабора- торные работы	контроля	
1.	Тема 1. Введение. Фазы и компоненты	6	1	1	0	1		
2.	Тема 2. Фазы и компоненты	6	2	1	0	1	Устный опрос	
3.	Тема 3. Возникновение новой фазы	6	3	1	0	1	Устный опрос	
4.	Тема 4. Возникновение новой фазы	6	4	1	0	1	Устный опрос	

N	Раздел Дисциплины/	Семестр	Неделя семестра	аудит их т	иды и час орной ра рудоемко (в часах)	Текущие формы контроля	
	Модуля		семестра	Лекции	Практи- ческие занятия	Лабора- торные работы	контроля
5.	Тема 5. Рост и равновесная форма кристаллов	6	5	1	0	1	Устный опрос
6.	Тема 6. Рост и равновесная форма кристаллов	6	6	1	0	1	Устный опрос
7.	Тема 7. Рост кристаллов из пара	6	7	1	0	1	Устный опрос
8.	Тема 8. Рост кристаллов из пара Самостоятельная работа 7 Равновесная форма кристаллов	6	8	1	0	1	Устный опрос
9.	Тема 9. Рост кристаллов из расплава	6	9	1	0	1	Устный опрос
10.	Тема 10. Рост кристаллов из раствора	6	10	1	0	1	Устный опрос
11.	Тема 11. Рост кристаллов из раствора	6	11	1	0	1	Контрольная работа Устный опрос
12.	Тема 12. Скорость роста и форма кристаллов в присутствии примеси	6	12	1	0	1	Устный опрос
13.	Тема 13. Лекция 13 Скорость роста и форма кристаллов в присутствии примеси	6	13	1	0	1	Устный опрос
14.	Тема 14. Зависимость качества кристаллов от условий их выращивания	6	14	1	0	1	Устный опрос
15.	Тема 15. Зависимость качества кристаллов от условий их выращивания	6	15	1	0	1	Устный опрос
	Тема 16. Массовая кристаллизация	6	16	1	0	1	Контрольная работа Устный опрос
17.	Тема 17. Методы исследования процессов роста кристаллов	6	17	1	0	1	
18.	Тема 18. Методы исследования процессов роста кристаллов	6	18	1	0	1	
	Тема . Итоговая форма контроля	6		0	0	0	Зачет
	Итого			18	0	18	

4.2 Содержание дисциплины

Тема 1. Введение. Фазы и компоненты

лекционное занятие (1 часа(ов)):

Фазы и компоненты. Уравнения Гиббса-Дюгема для двухфазной двухкомпонентной системы. Условия равновесия и превращения фаз. Кристаллизация в однокомпонентной системе

лабораторная работа (1 часа(ов)):

Определение фазового состава систем в различных условиях (температура, давление)

Тема 2. Фазы и компоненты

лекционное занятие (1 часа(ов)):

Диаграммы состояния двухкомпонентных систем, Усложненные диаграммы состояния. Изображение фазовых состояний трехкомпонентной системы. Поверхностное натяжение. Формула Лапласа. Уравнение Гиббса-Томсона

лабораторная работа (1 часа(ов)):

Диаграммы состояния двухкомпонентных систем. Определение состава жидкой и твердой фаз.

Тема 3. Возникновение новой фазы

лекционное занятие (1 часа(ов)):

Гомогенное зарождение капель жидкости. Гомогенное зарождение кристаллов. Гетерогенное зарождение кристаллов. Размножение кристаллов.

лабораторная работа (1 часа(ов)):

Гомогенное зарождение новой фазы. Критический радиус зародыша. Химический потенциал отнесенный к одной частице

Тема 4. Возникновение новой фазы

лекционное занятие (1 часа(ов)):

Влияние внешних воздействий на скорость зародышеобразования. Теория образования трехмерных зародышей на чужеродных частицах. Образование зародышей при высоких пересыщениях.

лабораторная работа (1 часа(ов)):

Влияние внешних факторов на скорость возникновения кристаллов. Особенности возникновения зародышей при очень высоких пересыщениях

Тема 5. Рост и равновесная форма кристаллов

лекционное занятие (1 часа(ов)):

Модели роста кристаллов. Рост идеального кристалла путем образования двумерных зародышей. Равновесная форма кристаллов.

лабораторная работа (1 часа(ов)):

Образование двумерных зародышей при росте монокристаллов серебра. Вычисление удельной свободной поверхностной энергии

Тема 6. Рост и равновесная форма кристаллов

лекционное занятие (1 часа(ов)):

Зависимость краевой и поверхностной энергии от направления. Возможности реализации равновесной формы кристалла. Соотношение между равновесной формой и формой роста. Формы роста и классификация граней монокристаллов.

лабораторная работа (1 часа(ов)):

Вычисление равновесной формы кристалла по методу Странского-Каишева. Влияние температуры на равновесную структуру поверхности кристалла.

Тема 7. Рост кристаллов из пара

лекционное занятие (1 часа(ов)):

Адсорбционный слой и поверхностная диффузия. Скорость перемещения ступени на грани кристалла. Нормальная скорость роста грани.

лабораторная работа (1 часа(ов)):

Зависимость величины среднего перемещения молекулы от температуры в адсорбционном слое на грани кристалла. Роль поверхностных диффузий при росте пластинчатых и нитевидных кристаллов из пара

Тема 8. Рост кристаллов из пара Самостоятельная работа 7 Равновесная форма кристаллов

лекционное занятие (1 часа(ов)):

Рельеф поверхности в случае роста на дислокациях. Рост грани путем образования двумерных зародышей. Эпитаксия. Получение квантоворазмерных структур.

лабораторная работа (1 часа(ов)):

Построение зависимости нормальной скорости роста граней от пересыщения. Основные методв получения квантоворазмерных структур.

Тема 9. Рост кристаллов из расплава

лекционное занятие (1 часа(ов)):

Затвердевание чистого расплава. Очистка вещества при кристаллизации расплава. Концентрационное переохлаждение расплава.

лабораторная работа (1 часа(ов)):

Выращивание кристаллов из расплава.

Тема 10. Рост кристаллов из раствора

лекционное занятие (1 часа(ов)):

Тепло и массоперенос при росте кристаллов из раствора. Скорость роста шероховатой грани из раствора. Кинетический коэффициент шероховатой грани.

лабораторная работа (1 часа(ов)):

Выращивание кристаллов из водных растворов без термостатирования

Тема 11. Рост кристаллов из раствора

лекционное занятие (1 часа(ов)):

Послойный рост кристаллов из раствора. Поверхностно-диффузионная модель роста (ПД-модель). Слоистый рост кристалла при прямом встраивании частиц в ступени.

лабораторная работа (1 часа(ов)):

Выращивание кристаллов методом концентрационной конвекции в термостатированных условиях

Тема 12. Скорость роста и форма кристаллов в присутствии примеси *лекционное занятие (1 часа(ов)):*

Влияние примесей на рост кристаллов. Изменение состава и свойств кристаллообразующей среды в присутствии постороннего вещества. Адсорбционное действие примеси

лабораторная работа (1 часа(ов)):

Влияние адсорбированной примеси, частицы которой образуют линейные или двумерные образования.

Тема 13. Лекция 13 Скорость роста и форма кристаллов в присутствии примеси лекционное занятие (1 часа(ов)):

Поверхностная концентрация адсорбированной примеси. Энергетическое воздействие примеси на рост кристалла. Кинетическое воздействие примеси на рост кристаллов.

лабораторная работа (1 часа(ов)):

Влияние растворителя на кристаллизацию.

Тема 14. Зависимость качества кристаллов от условий их выращивания *лекционное занятие (1 часа(ов)):*

Включения раствора в кристалл. Секториальное и зональное строение кристаллов.

лабораторная работа (1 часа(ов)):

Секториальное строение, внутрисекториальные границы и слои роста в кристаллах KDP

Тема 15. Зависимость качества кристаллов от условий их выращивания *лекционное занятие (1 часа(ов)):*

Захват неструктурных примесей и кристаллизационное давление. Аномальная оптическая двуосность кристаллов KDP.

лабораторная работа (1 часа(ов)):

Оптические неоднородности в кристаллах смешанных флюоритовых составов вида M(1-x)RxF(2+x) (M - Ca, Ba, Sr, P3И)

Тема 16. Массовая кристаллизация

лекционное занятие (1 часа(ов)):

Особенности массовой кристаллизации. Кинетика массовой кристаллизации. массовая кристаллизация из раствора.

лабораторная работа (1 часа(ов)):

Твердофазный рост кристаллов

Тема 17. Методы исследования процессов роста кристаллов

лекционное занятие (1 часа(ов)):

Моделирование процессов роста кристаллов на компьютере. Интерференционные методы исследования процессов роста кристаллов.

лабораторная работа (1 часа(ов)):

Примеры моделирования роста кристаллов

Тема 18. Методы исследования процессов роста кристаллов

лекционное занятие (1 часа(ов)):

Рентгенографические методы исследования процессов роста кристаллов. Исследование процессов роста кристаллов методами сканирущей зондовой микроскопии.

лабораторная работа (1 часа(ов)):

Обнаружение ростовых дефектов в кристаллах рентгенотопографическими методами

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самосто-ятельной работы
2.	Тема 2. Фазы и компоненты	6	2	подготовка к устному опросу	2	устный опрос
3.	Тема 3. Возникновение новой фазы	6	3	подготовка к устному опросу	2	устный опрос
4.	Тема 4. Возникновение новой фазы	6	4	подготовка к устному опросу	2	устный опрос
5.	Тема 5. Рост и равновесная форма кристаллов	6	5	подготовка к устному опросу	3	устный опрос
6.	Тема 6. Рост и равновесная форма кристаллов	6	6	подготовка к устному опросу	3	устный опрос
7.	Тема 7. Рост кристаллов из пара	6	7	подготовка к устному опросу	3	устный опрос

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самосто- ятельной работы
8.	Тема 8. Рост кристаллов из пара Самостоятельная работа 7 Равновесная форма кристаллов	6	8	подготовка к устному опросу	3	устный опрос
9.	Тема 9. Рост кристаллов из расплава	6	9	подготовка к устному опросу	3	устный опрос
10.	Тема 10. Рост кристаллов из раствора	6	10	подготовка к устному опросу	2	устный опрос
11.	Тема 11. Рост кристаллов из	6	11	подготовка к контрольной работе	1	контроль ная работа
	раствора			подготовка к устному опросу	2	устный опрос
12.	Тема 12. Скорость роста и форма кристаллов в присутствии примеси	6	12	подготовка к устному опросу	2	устный опрос
13.	Тема 13. Лекция 13 Скорость роста и форма кристаллов в присутствии примеси	6	13	подготовка к устному опросу	2	устный опрос
14.	Тема 14. Зависимость качества кристаллов от условий их выращивания	6	14	подготовка к устному опросу	2	устный опрос
15.	Тема 15. Зависимость качества кристаллов от условий их выращивания	6	15	подготовка к устному опросу	2	устный опрос
16.	Тема 16. Массовая	6	16	подготовка к контрольной работе	1	контроль ная работа
	кристаллизация			подготовка к устному опросу	1	устный опрос
	Итого		_		36	

5. Образовательные технологии, включая интерактивные формы обучения

Лекционные и практические занятия проводятся с использованием мультимедийного комплекса, позволяющего наглядно получать студентам всю необходимую информацию. Занятия проводятся в интерактивной форме, позволяющей студентам лучше усваивать материал. В лекциях уделено большое внимание разбору конкретных ситуаций возможных для реальных кристаллических веществ. Качество обучения достигается за счет использования следующих форм учебной работы: лекции (использование проблемных ситуаций, разбор конкретных ситуаций), самостоятельная работа студента (выполнение индивидуальных домашних заданий), консультации.

Для более наглядного представления студентам различных типов кристаллических структур используется программный пакет "Balls & Sticks (http://www.tovcrate.org/bs/download/bs_download.html)" и интернет ресурс "Crystallography Ope

(http://www.toycrate.org/bs/download/bs_download.html)" и интернет ресурс "Crystallography Open Database (http://www.crystallography.net/)"

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение. Фазы и компоненты

Тема 2. Фазы и компоненты

устный опрос, примерные вопросы:

Уравнения Гиббса-Дюгема для двухфазной двухкомпонентной системы. Условия равновесия и превращения фаз. Кристаллизация в однокомпонентной системе

Тема 3. Возникновение новой фазы

устный опрос, примерные вопросы:

Диаграммы состояния двухкомпонентных систем. Правило рычага. Типы диаграмм с различной степенью растворимости компонентов

Тема 4. Возникновение новой фазы

устный опрос, примерные вопросы:

Диаграммы с образованием устойчивого химического соединения, разлагающегося соединения и с образованием соединения - твердого раствора.

Тема 5. Рост и равновесная форма кристаллов

устный опрос, примерные вопросы:

Гомогенное и гетерогенное зарождение кристаллов. Размножение кристаллов.

Тема 6. Рост и равновесная форма кристаллов

устный опрос, примерные вопросы:

Влияние внешних воздействий на скорость зародышеобразования. Образование зародышей при высоких перересыщениях

Тема 7. Рост кристаллов из пара

устный опрос, примерные вопросы:

Рост идеального кристалла путем образования двумерных зародышей. Образование двумерных зародышей при росте монокристаллов серебра

Тема 8. Рост кристаллов из пара Самостоятельная работа 7 Равновесная форма кристаллов

устный опрос, примерные вопросы:

Зависимость краевой и поверхностной энергии от направления. Возможности реализации равновесной формы кристалла. Соотношение между равновесной формой и формой роста. Формы роста и классификация граней монокристаллов

Тема 9. Рост кристаллов из расплава

устный опрос, примерные вопросы:

Адсорбционный слой и поверхностная диффузия. Скорость перемещения ступени на грани кристалла. Нормальная скорость роста грани.

Тема 10. Рост кристаллов из раствора

устный опрос, примерные вопросы:

Механизмы эпитаксии. Факторы влияющие на процесс получения совершенных монокристаллических слоев.

Тема 11. Рост кристаллов из раствора

контрольная работа, примерные вопросы:

Контрольная 1 1. Фазы и компоненты. 2. Кристаллизация в однокомпонентной системе 3. Гомогенное зарождение капель жидкости, кристаллов. 4. Модели роста кристаллов. 5. Равновесная форма кристаллов 6. Влияние температуры на равновесную структуру поверхности кристалла 7. Эпитаксия

устный опрос, примерные вопросы:

Затвердевание чистого расплава. Очистка вещества при кристаллизации расплава. Концентрационное переохлаждение расплава.

Тема 12. Скорость роста и форма кристаллов в присутствии примеси

устный опрос, примерные вопросы:

ПВ и ПД модели роста кристаллов из раствора.

Тема 13. Лекция 13 Скорость роста и форма кристаллов в присутствии примеси устный опрос , примерные вопросы:

Влияние примесей на рост кристаллов. Изменение состава и свойств кристаллообразующей среды в присутствии постороннего вещества. Адсорбционное действие примеси

Тема 14. Зависимость качества кристаллов от условий их выращивания

устный опрос, примерные вопросы:

Включения раствора в кристалл. Секториальное и зональное строение кристаллов.

Тема 15. Зависимость качества кристаллов от условий их выращивания устный опрос, примерные вопросы:

устный опрос, примерные вопросы:

Особенности массовой кристаллизации. Кинетика массовой кристаллизации. массовая кристаллизация из раствора. Твердофазный рост кристаллов

Тема 16. Массовая кристаллизация

контрольная работа, примерные вопросы:

Контрольная 2 1. Очистка вещества при кристаллизации расплава. 2. Влияние примесей на рост кристаллов 3. Твердофазный рост кристаллов. 4. Моделирование процессов роста кристаллов. 5. Интерференционные и рентгенографические методы исследования процессов роста кристаллов 6. Возможности ограничения роста кристаллов в некоторых направлениях устный опрос , примерные вопросы:

Моделирование процессов роста кристаллов на компьютере. Интерференционные методы исследования процессов роста кристаллов. Рентгенографические методы исследования процессов роста кристаллов. Исследование процессов роста кристаллов методами сканирующей зондовой микроскопии.

Тема 17. Методы исследования процессов роста кристаллов

Тема 18. Методы исследования процессов роста кристаллов

Итоговая форма контроля

зачет (в 6 семестре)

Примерные вопросы к зачету:

- 1. Фазы и компоненты. Условия равновесия и превращения фаз
- 2. Кристаллизация в однокомпонентной системе
- 3. Гомогенное зарождение капель жидкости, кристаллов.

- 4. Гетерогенное зарождение кристаллов. Влияние внешних воздействий на скорость зародышеобразования
- 5. Модели роста кристаллов. Рост идеального кристалла путем образования двумерных зародышей
- 6. Равновесная форма кристаллов. Вычисление удельной свободной поверхностной энергии.
- 7. Возможности реализации равновесной формы кристалла. Соотношение между равновесной формой и формой роста. Влияние температуры на равновесную структуру поверхности кристалла
- 8. Адсорбционный слой и поверхностная диффузия. Скорость перемещения ступени на грани кристалла. Рост грани кристалла путем образования двумерных зародышей. Эпитаксия
- 9. Затвердевание чистого расплава. Очистка вещества при кристаллизации расплава. Концентрационное переохлаждение расплава.
- 10. Тепло и массоперенос при росте кристаллов из раствора. Послойный рост.
- 11. Влияние примесей на рост кристаллов Изменение состава и свойств кристаллообразующей среды в присутствии постороннего вещества
- 12. Включение раствора в кристалл. Секториальное и зональное строение кристаллов Захват неструктурных примесей и кристаллизационное давление
- 13. Особенности массовой кристаллизации. Массовая кристаллизация из раствора. Твердофазный рост кристаллов.
- 14. Моделирование процессов роста кристаллов.
- 15. Интерференционные и рентгенографические методы исследования процессов роста кристаллов
- 16. Возможности ограничения роста кристаллов в некоторых направлениях
- 17. Образование и рост нитевидных кристаллов в растворе в присутствии примесей

Оценочные средства для текущего контроля успеваемости и учебно-методическое обеспечение самостоятельной работы студентов (баллы набираемые в течение семестра).

В течение семестра результирующим контролем самостоятельнойработы являются 2 контрольных работы, проводимые в середине и в конце семестра.

За правильное выполнение заданий каждой контрольной работы студент получает до 25 баллов. Максимальное количество баллов набранных за самостоятельную работу 50

Для допуска к экзамену студенту необходимо набрать более 28 баллов.

6.2 Аттестация по итогам освоения дисциплины (баллы набираемые на экзамене).

На экзамене студент получает 2 вопроса из прилагаемого списка (Приложение 1 стр 1). За ответы на каждый из вопросов он получает до 25 баллов. Результирующая оценка получается суммированием баллов, полученных в течение семестра и на экзамене.

7.1. Основная литература:

- 1. Нуриева E.M., Ескин A.A. Кристаллография Казань 2017. 94c. URL: https://dspace.kpfu.ru/xmlui/handle/net/110751
- 2. Брагина, В. И. Кристаллография, минералогия и обогащение полезных ископаемых [Электронный ресурс]: учеб. пособие / В. И. Брагина. Красноярск: Сиб. федер. ун-т, 2012. 152 с. Режим доступа: http://www.znanium.com/bookread.php?book=492236
- 3. Аникина, В. И. Основы кристаллографии и дефекты кристаллического строения [Электронный ресурс] : Практикум / В. И. Аникина, А. С. Сапарова. Красноярск: Сиб. федер. ун-т, 2011. 148 с. Режим доступа: http://znanium.com/bookread.php?book=441367

7.2. Дополнительная литература:

- 1. Переломова, Н.В. Кристаллофизика. Сборник задач с решениями [Электронный ресурс]: учебное пособие / Н.В. Переломова, М.М. Тагиева; под ред. Ю.Н. Пархоменко. ? Электрон. дан. ? Москва: МИСИС, 2013. ? 408 с. ? Режим доступа: https://e.lanbook.com/book/47467
- 2. Соколов И.А. Дефекты кристаллической структуры полупроводниковых материалов [Электронный ресурс]: Учебное пособие / Кочемировский В.А., Соколов И.А. СПб: СПбГУ, 2013. 36 с. Режим доступа: http://znanium.com/bookread2.php?book=941147

7.3. Интернет-ресурсы:

Видео Раздел кристаллография и кристалохимия - http://video.yandex.ru/users/geolcom/collection/2/

Данные о структуре кристаллов в базе данных ?Crystallography Open Database - http://www.crystallography.net/

Кристаллографическая и кристаллохимическая База данных для минералов и их структурных аналогов - http://database.iem.ac.ru/mincryst/rus/index.php

МГУ каф. Кристаллографии и кристаллохимии - http://cryst.geol.msu.ru/courses/ Уральский федеральный университет Геометрическая кристаллография -

http://media.ls.urfu.ru/154/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Рост кристаллов" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB.audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Освоение дисциплины "Рост кристаллов" предполагает использование следующего материально-технического обеспечения:

Мультимедийный комплекс для чтения лекций.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 03.03.03 "Радиофизика" и профилю подготовки Физика магнитных явлений.

Автор(ы)	:	
Марисов	M.A	
" "	201 г.	
		
Рецензен	нт(ы):	
Мухамед	` '	
-	шингинг.	
" "	201 г.	