МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

УТВЕРЖДАЮ

Проректор								
по образовательной деятельности КФ								
Проф. Таюрс	кий Д.А.							
"	20 г.							

Программа дисциплины

Лабораторный практикум по молекулярной физике в классах с углубленным изучением физики Б1.В.ОД.1.5

Направление подготовки: <u>44.04.01 - Педагогическое образование</u>
Профиль подготовки: Методика преподавания физики
Квалификация выпускника: <u>магистр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
Низамова Э.И.
Рецензент(ы):
Нефедьев Л.А.
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Нефедьев Л. А.
Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института физики:
Протокол заседания УМК No от "" 201г

Регистрационный No

Казань 2017

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) старший преподаватель, б/с Низамова Э.И. кафедра образовательных технологий в физике научно-педагогическое отделение, ElNizamova@kpfu.ru

1. Цели освоения дисциплины

Усовершенствование, развитие и углубление полученных ранее студентами знаний об особенностях современного лабораторного физического практикума в условиях масштабного внедрения новых информационных технологий в учебный процесс в школе.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.1 Дисциплины (модули)" основной образовательной программы 44.04.01 Педагогическое образование и относится к обязательным дисциплинам. Осваивается на 1 курсе, 1 семестр.

В ходе изучения дисциплины студенты приобретают необходимые знания, умения и навыки для организации и проведения современного школьного лабораторного практикума в соответствии с требованиями ФГОС и выбранной программой обучения. Для освоения курса студенты должны использовать знания, умения и виды деятельности, сформированные в процессе изучения курсов общей и теоретической физики, педагогики и психологии, методики обучения и воспитания в области физики.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-4 (общекультурные компетенции)	способностью формировать ресурсно-информационные базы для осуществления практической деятельности в различных сферах
ПК-12 (профессиональные компетенции)	готовностью к систематизации, обобщению и распространению отечественного и зарубежного методического опыта в профессиональной области
ПК-3 (профессиональные компетенции)	способностью руководить исследовательской работой обучающихся

В результате освоения дисциплины студент:

1. должен знать:

- современное оборудование лабораторного практикума (лабораторная база, оснащенная специальным лабораторным и демонстрационным оборудованием фирмы LDidactic (Германия)), правила его эксплуатации и хранения;
- использование компьютерной техники для проведения автоматизированного лабораторного практикума;
- классификацию учебного физического эксперимента по видам (фронтальные лабораторные работы, демонстрационный эксперимент, работы физического лабораторного практикума) и формы его проведения;
- -основные закономерности формирования у учащихся экспериментальных умений;
- -методы оценки погрешностей измерений в экспериментальных исследованиях;
- -правила охраны труда в кабинете физики, техники безопасности и противопожарной защиты;

2. должен уметь:

- раскрывать сущность изучаемых понятий, физических явлений, экспериментальных законов и т.п. средствами лабораторного практикума;
- выбирать оптимальную методику проведения учебного лабораторного практикума в соответствии с поставленной целью урока;
- описывать технологию проведения лабораторного практикума по определенному разделу (курсу) физики;
- использовать технические средства обучения (компьютер и др.) для повышения эффективности лабораторного практикума.

3. должен владеть:

- методами организации и проведения лабораторного практикума в соответствии с современными требованиями;
- программными средствами при обработке результатов лабораторных экспериментов.
- 4. должен демонстрировать способность и готовность: применять полученные знания на практике

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	-
1	Тема 1. Содержание, роль и место физического эксперимента в преподавании физики, современные тенденции и перспективы развития.		1-2	0	0	4	устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторные			Текущие формы контроля
				Лекции	практические занятия	лаоораторные работы	
2.	Тема 2. Система школьного эксперимента. Виды лабораторных занятий по физике, методика их организации и проведения.	1	3-4	0	0	4	устный опрос
3.	Тема 3. Исследование броуновского движения	1	5-6	0	0	4	лабораторные работы
4.	Тема 4. Определение скрытой теплоты испарения воды. Определение удельной теплоты плавления льда.	1	7-8	0	0	4	лабораторные работы
5.	Тема 5. Превращение механической энергии в теплоту.	1	9-10	0	0	4	лабораторные работы
6.	Тема 6. Измерение коэффициента поверхностного натяжения по методу отрыва.	1	11-12	0	0		лабораторные работы
	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Итого			0	0	24	

4.2 Содержание дисциплины

Тема 1. Содержание, роль и место физического эксперимента в преподавании физики, современные тенденции и перспективы развития.

лабораторная работа (4 часа(ов)):

Теоретический и экспериментальный методы физической науки. Этапы физического эксперимента: формулирование гипотезы, выдвижение познавательной задачи; создание экспериментальной установки, осуществление эксперимента в контролируемых условиях, проведение измерений, анализ данных, формулирование научного вывода или положения. Роль и место экспериментального метода в школьном курсе физики.

Тема 2. Система школьного эксперимента. Виды лабораторных занятий по физике, методика их организации и проведения.

лабораторная работа (4 часа(ов)):

Фундаментальные научные эксперименты. Их роль в организации учебного процесса при приобретении новых знаний, реализации политехнического принципа, осуществлении межпредметных связей. Проблемные опыты. Проблемный подход к обучению. Школьный физический эксперимент как источник создания проблемной ситуации. Уровни проблемности. Требования, предъявляемые к демонстрации проблемных опытов.

Тема 3. Исследование броуновского движения *пабораторная работа (4 часа(ов)):*

Наблюдение в микроскоп и исследование броуновского движения. Знакомство с решением уравнения Эйнштейна-Смолуховского.

Тема 4. Определение скрытой теплоты испарения воды. Определение удельной теплоты плавления льда.

лабораторная работа (4 часа(ов)):

Наблюдение фазовых переходов первого рода (парообразование, плавление). Измерение удельной теплоты парообразования воды. Измерение удельной теплоты плавления льда.

Тема 5. Превращение механической энергии в теплоту.

лабораторная работа (4 часа(ов)):

Получение соотношения между механической энергией и тепловой энергий при их преобразовании в данной экспериментальной установке.

Тема 6. Измерение коэффициента поверхностного натяжения по методу отрыва. лабораторная работа (4 часа(ов)):

Измерение коэффициента поверхностного натяжения различных жидкостей методом отрыва кольца. Регистрация и анализ данных с помощью CASSY.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Содержание, роль и место физического эксперимента в преподавании физики, современные тенденции и перспективы развития.	1	1-2	подготовка к устному опросу	8	устный опрос
2.	Тема 2. Система школьного эксперимента. Виды лабораторных занятий по физике, методика их организации и проведения.	1	3-4	подготовка к устному опросу	8	устный опрос
3.	Тема 3. Исследование броуновского движения	1		Обработка результатов экспериментальн части лабораторной работы. Проработка теоретической части ла	o	лабораторные работы
4.	Тема 4. Определение скрытой теплоты испарения воды. Определение удельной теплоты плавления льда.	1	7-8	Обработка результатов экспериментальн части лабораторной работы. Проработка теоретической части ла	юй 8	лабораторные работы

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
5.	Тема 5. Превращение механической энергии в теплоту.	1	9-10	Обработка результатов экспериментальн части лабораторной работы. Проработка теоретической части ла	ной	лабораторные работы
6.	Тема 6. Измерение коэффициента поверхностного натяжения по методу отрыва.	1		Обработка результатов экспериментальн части лабораторной работы. Проработка теоретической ча	1 ОЙ 8	лабораторные работы
	Итого				48	

5. Образовательные технологии, включая интерактивные формы обучения

- Проблемное обучение стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.
- Контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением. При этом знания, умения, навыки даются не как предмет для запоминания, а в качестве средства решения профессиональных задач.
- Обучение на основе опыта активизация познавательной деятельности студента за счет ассоциации и собственного опыта.
- Междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте решаемой задачи.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Содержание, роль и место физического эксперимента в преподавании физики, современные тенденции и перспективы развития.

устный опрос, примерные вопросы:

1. Теоретический и экспериментальный методы физической науки. Этапы физического эксперимента. 2. Учебный физический эксперимент, его значение в школьном курсе физики. 3. Фундаментальные научные эксперименты. Их роль в организации учебного процесса.

Тема 2. Система школьного эксперимента. Виды лабораторных занятий по физике, методика их организации и проведения.

устный опрос, примерные вопросы:

1. Система современного школьного физического эксперимента. 2. Обработка и оформление результатов эксперимента. 3. Лабораторные занятия по физике, их значение в учебном процессе. Виды лабораторных занятий по физике. 4. Организация, методика проведения и содержание каждого вида лабораторных занятий (фронтальных и в виде практикумов). 5. Активизация деятельности учащихся на лабораторных занятиях. 6. Школьный физический кабинет и его оборудование.

Тема 3. Исследование броуновского движения

лабораторные работы, примерные вопросы:

1. Основные положения молекулярно- кинетической теории. 2. Статистический подход к описанию молекулярных явлений. 3. Броуновское движение. Формула Эйнштейна-Смолуховского.

Тема 4. Определение скрытой теплоты испарения воды. Определение удельной теплоты плавления льда.

лабораторные работы, примерные вопросы:

- 1. Фазы вещества. 2. Фазовые переходы первого и второго рода. 3. Испарение и конденсация.
- 4. Плавление и кристаллизация. Возгонка. 5. Фазовые диаграммы. Тройная точка.

Тема 5. Превращение механической энергии в теплоту.

лабораторные работы, примерные вопросы:

1. Механическая энергия системы. 2. Внутренняя энергия системы. 3. Диссипативные силы. 4. Превращение механической энергии во внутреннюю

Тема 6. Измерение коэффициента поверхностного натяжения по методу отрыва.

лабораторные работы, примерные вопросы:

1. Поверхностные явления. 2. Коэффициент поверхностного натяжения. 3. Краевой угол. Смачивание и несмачивание. 4. Давление под искривленной поверхностью жидкости. 5. Капиллярные явления.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

- 1. Теоретический и экспериментальный методы физической науки. Этапы физического эксперимента.
- 2. Учебный физический эксперимент, его значение и задачи в школьном курсе физики.
- 3. Система современного школьного физического эксперимента.
- 4. Обработка и оформление результатов эксперимента.
- 5. Фундаментальные научные эксперименты. Их роль в организации учебного процесса.
- 6. Соблюдение правил безопасности труда.
- 7. Использование компьютеров в современном школьном физическом эксперименте.
- 8. Демонстрационный эксперимент по физике, его значение в преподавании. Методические требования к демонстрационному эксперименту.
- 9. Методика и технология подготовки и проведения демонстраций.
- 10. Лабораторные занятия по физике, их значение в учебном процессе. Виды лабораторных занятий по физике.
- 11. Организация, методика проведения и содержание каждого вида лабораторных занятий (фронтальных и в виде практикумов).
- 12. Активизация деятельности учащихся на лабораторных занятиях.
- 13. Современный учебно-методический комплекс для обучения физике.
- 14. Школьный физический кабинет и его оборудование.
- 15. Средства обучения и их классификация.
- 16. Проблемные опыты. Уровни проблемности. Требования, предъявляемые к демонстрации проблемных опытов.
- 17. Оборудование для проведения физического лабораторного практикума.
- 18. Виртуальный эксперимент.
- 19. Электронный лабораторный практикум.
- 20. Роль дистанционного обучения в обучении физики.
- 21. Новые информационные технологии в преподавании физики.
- 22. Компьютерные модели.

- 23. Компьютерные лабораторные работы. Особенности компьютерного эксперимента.
- 24. Основные положения молекулярно- кинетической теории.
- 25. Статистический подход к описанию молекулярных явлений.
- 26. Броуновское движение. Формула Эйнштейна-Смолуховского.
- 27. Механическая энергия системы.
- 28. Внутренняя энергия системы.
- 29. Диссипативные силы.
- 30. Превращение механической энергии во внутреннюю.
- 31. Фазы вещества.
- 32. Фазовые переходы первого и второго рода.
- 33. Испарение и конденсация.
- 34. Плавление и кристаллизация. Возгонка.
- 35. Фазовые диаграммы. Тройная точка.
- 36. Поверхностные явления.
- 37. Коэффициент поверхностного натяжения.
- 38. Краевой угол. Смачивание и несмачивание.
- 39. Давление под искривленной поверхностью жидкости.
- 40. Капиллярные явления.

7.1. Основная литература:

- 1. Механика и молекулярная физика: Учебное пособие / Л.Д. Ландау, А.И. Ахиезер, Е.М. Лифшиц. 4-е изд. Долгопрудный: Интеллект, 2014. 400 с.: 60х90 1/16. (переплет) ISBN 978-5-91559-177-5. http://znanium.com/catalog.php?bookinfo=500638.
- 2. Сборник вопросов и задач по общей физике. Раздел 5. Молекулярная физика: Учебное пособие / Казанцева А.Б., Соина Н.В., Гольцман Г.Н. М.:МПГУ, 2012. 144 с.: ISBN 978-5-7042-2340-5. http://znanium.com/catalog.php?bookinfo=757792.
- 3. Курс общей физики: Учебное пособие / К.Б. Канн. М.: КУРС: НИЦ ИНФРА-М, 2014. 360 с.: 60х90 1/16. (переплет) ISBN 978-5-905554-47-6, 700 экз. http://znanium.com/catalog.php?bookinfo=443435.

7.2. Дополнительная литература:

- 1. Общая физика: руководство по лабораторному практикуму: Учебное пособие / Под ред. И.Б. Крынецкого, Б.А. Струкова. М.: ИНФРА-М, 2012. 596 с.: 60х90 1/16. (Высшее образование). (переплет) ISBN 978-5-16-003288-7. http://znanium.com/catalog.php?bookinfo=345060
- 2. Оспенникова, Е. В. Использование ИКТ в преподавании физики в средней общеобразовательной школе [Электронный ресурс] : методическое пособие / Е. В. Оспенникова. М. : БИНОМ. Лаборатория знаний, 2011. 655 с. : ил. (ИКТ в работе учителя). ISBN 978-5-9963-0111-9. http://znanium.com/catalog.php?bookinfo=365651.
- 3. Сорокин, А. В. Физика: наблюдение, эксперимент, моделирование. Элективный курс [Электронный ресурс]: методическое пособие / А. В. Сорокин, Н. Г. Торгашина, Е. А. Ходос и др. 2-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2012. 199 с.: ил. ISBN 978-5-9963-0877-4. http://znanium.com/catalog.php?bookinfo=475941
- 4. Зуев, П. В. Простые опыты по физике в школе и дома [Электронный ресурс] : метод. пособие для учителей / П. В. Зуев. 2 изд., стер. М.: Флинта, 2012. 141 с. ISBN 978-5-9765-1363-1. http://znanium.com/catalog.php?bookinfo=455150

7.3. Интернет-ресурсы:

Дистанционный лабораторный практикум. - http://phdep.ifmo.ru/labor/common/ Кабинет физики - http://www.edu.delfa.net/

Разработки фирмы Физикон, Открытая физика, Физика в картинках. - http://www.scph.mipt.ru Физика: коллекция опытов. - http://experiment.edu.ru

Школьный эксперимент (конспект лекций) / Альтшуллер О.Г., Гордиенко Н.И./, Электронное учебно-методическое пособие, Кемеровский государственный университет - http://physic.kemsu.ru/pub/library/learn pos/ds pos/school/index.html

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Лабораторный практикум по молекулярной физике в классах с углубленным изучением физики" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Освоение дисциплины предполагает использование следующего материально-технического обеспечения: лабораторная база, оснащенная специальным лабораторным и демонстрационным оборудованием фирмы LDidactic (Германия).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 44.04.01 "Педагогическое образование" и магистерской программе Методика преподавания физики .

Программа дисциплины "Лабораторный практикум по молекулярной физике в классах с углубленным изучением физики"; 44.04.01 Педагогическое образование; старший преподаватель, б/с Низамова Э.И.

Автор(ы):			
Низамова Э.И.			
""	_ 201 _	г.	
Рецензент(ы):			
Нефедьев Л.А	۱.		
"	_201	г.	