МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Спинтроника Б1.В.ДВ.7

Направление подготовки: 03.03.03 - Радиофизика
Профиль подготовки: Физика магнитных явлений

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Воронина Е. В.	
Протокол заседания кафедры No от ""	201
Учебно-методическая комиссия Института физики:	
Протокол заседания УМК No от ""	201г

Регистрационный No 6159418

Казань 2018

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) Тагиров Л.Р., Itagirov@mail.ru

1. Цели освоения дисциплины

Целью освоения дисциплины "Спинтроника" являются изучение основ спин-зависящих явлений в различных объектах, включая низкоразмерные структуры и магнитные наноструктуры

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.7 Дисциплины (модули)" основной образовательной программы 03.03.03 Радиофизика и относится к дисциплинам по выбору. Осваивается на 4 курсе, 8 семестр.

Является частью модуля Б.3 профессионального цикла. Изучение данной дисциплины базируется на вузовской подготовке студентов по модулям высшей математики, общей физики (разделы: "Молекулярная физика", "Электричество", "Атомная физика") теоретической физики (разделы "Электродинамика", "Квантовая теория", "Статистическая физика"), "Физике сплошных сред". Осваивается на четвертом курсе обучения, седьмой семестр.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции					
ОК-11 (общекультурные компетенции)	способностью собирать, обобщать и интерпретировать с использованием современных информационных технологий информацию, необходимую для формирования суждений по соответствующим специальным, научным, социальным и этическим проблемам					
ОК-14 (общекультурные компетенции)	способностью к овладению базовыми знаниями в области информатики и современных информационных технологий, программными средствами и навыками работы в компьютерных сетях, использованию баз данных и ресурсов Интернет					
ОК-4 (общекультурные компетенции)	способностью критически переосмысливать накопленный опыт, изменять при необходимости профиль своей профессиональной деятельности					
ПК-1 (профессиональные компетенции)	способностью использовать базовые теоретические знания (в том числе по дисциплинам профилизации) для решения профессиональных задач					
ПК-2 (профессиональные компетенции)	способностью применять на практике базовые профессиональные навыки					
ПК-3 (профессиональные компетенции)	способностью понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры и оборудования					
ПК-6 (профессиональные компетенции)	способностью к профессиональному развитию и саморазвитию в области радиофизики и электроники					

В результате освоения дисциплины студент:

1. должен знать:

теоретические основы спинтроники и ее применение в спинтронных устройствах

2. должен уметь:

использовать знание теоретических основ спинтроники при анализе различных спин-зависимых эффектов

3. должен владеть:

навыками системного подхода к спин-зависящим явлениям в различных объектах, навыками вычисления спин-зависящих свойств различных систем

4. должен демонстрировать способность и готовность:

применять на практике базовые профессиональные знания для анализа спин-зависящих явлений в различных объектах, включая низкоразмерные структуры и магнитные наноструктуры; уметь пользоваться современными методами анализа и синтеза физической информации; понимать и излагать получаемую информацию и представлять результаты физических исследований.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 8 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Дисциплины/ Семестр			Виды и ча аудиторной ра их трудоемк (в часах	Текущие формы контроля	
	МОДУЛЯ	·		Лекции	Практические занятия	Лабораторные работы	-
1.	Тема 1. Магнитные взаимодействия и магнитные структуры	8	1	2	0	0	Устный опрос
2.	Тема 2. Ферромагнитные металлы	8	2-3	4	0	0	Устный опрос
3.	Тема 3. Транспорт носителей тока в немагнитных металлах и полупроводниках	8	4-5	4	0	0	Устный опрос
4.	Тема 4. Спин-зависящий транспорт в магнитных металлах, полупроводниках и гетероструктурах	8	6-7	6	0	0	Устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной р их трудоемк (в часах Практические	Текущие формы контроля		
5	Тема 5. Гигантское магнитосопротивление (ГМС) Туннельное магнитосопротивление	0	8-12	6	занятия 0	работы	Письменная работа	
6	Тема 6. Спиновые клапаны (вентили) и спин-электронные устройства для записи информации Другие применения спин-поляризованного транспорта	8	13-16	6	0	0	Устный опрос	
7	Тема 7. Точечные магнитные контакты Сверхпроводящая спинтроника	8	17-18	6	6 0 0		Устный опрос	
8	.Тема 8. Аттестация	8	18	2	0	0	Письменная работа	
	Тема . Итоговая форма контроля	8		0	0	0	Зачет	
	Итого			36	0	0		

4.2 Содержание дисциплины

Тема 1. Магнитные взаимодействия и магнитные структуры *лекционное занятие (2 часа(ов)):*

1.1. Магнитное диполь-дипольное взаимодействие. 1.2. Обменные взаимодействия. 1.3. Ферромагнитный порядок. 1.4. Антиферромагнетизм, ферримагнетизм.

Тема 2. Ферромагнитные металлы

лекционное занятие (4 часа(ов)):

2.1. Зонная структура ферромагнитных металлов 2.2. Модель Мота зоны проводимости ферромагнитных металлов 2.3. Модель взаимодействие между локализованными и делокализованными электронами в проводящих магнетиках.

Тема 3. Транспорт носителей тока в немагнитных металлах и полупроводниках *лекционное занятие (4 часа(ов)):*

3.1. Классическая теория Друде-Лоренца. Кинетическое уравнение Больцмана. Магнетосопротивление металлов и полупроводников. 3.2. Эффект Холла. 3.3. Метод функций Грина. Формула Кубо для проводимости. Зарядовый и спиновый токи. 3.4. Спиновый эффект Холла (внутренне присущий). Модели Рашбы и Дрессельхауза.

Тема 4. Спин-зависящий транспорт в магнитных металлах, полупроводниках и гетероструктурах

лекционное занятие (6 часа(ов)):

- 4.1. Дефазирование и рассеяние электронов с переворотом спина, кинетическое уравнение.
- 4.2. Анизотропное магнитосопротивление. 4.3. Граничное сопротивление, спиновое рассеяние на интерфейсе. 4.4. Спиновый эффект Холла (за счет рассеяния).

Тема 5. Гигантское магнитосопротивление (ГМС) Туннельное магнитосопротивление *лекционное занятие (6 часа(ов)):*

5.1. ГМС в металлических мультислоях, параллельная геометрия, больцмановская теория. 5.2. ГМС в металлических мультислоях, перпендикулярная геометрия, теория Ферта-Валета. 5.3. Экспериментальные наблюдения эффекта ГМС. 5.4. Туннелирование электронов в гетероструктурах с диэлектрическими барьерами. 5.5. Спин-поляризованное туннелирование. 5.6. Туннельное магнитосопротивление - теория. 5.7. Туннельное магнитосопротивление - эксперимент.

Тема 6. Спиновые клапаны (вентили) и спин-электронные устройства для записи информации Другие применения спин-поляризованного транспорта лекционное занятие (6 часа(ов)):

6.1. Спин-вентильный сенсор магнитного поля и его применения в устройствах для магнитной записи и хранения информации. 6.2. Применение спинового вентиля в качестве ячейки хранения информации, магниторезистивная память произвольного доступа. 6.3. Спиновый вращающий момент, переключение магниторезистивных ячеек импульсами тока, магниторезистивная память высокой интеграции. 6.4. Спин-поляризованный ток в структурах 'металл-ферромагнитный полупроводник'. 6.5. Спиновый диод на структурах 'металл-ферромагнитный полупроводник'. 6.6. Спиновые фильтры на основе структуры 'ферромагнитный полупроводник-полупроводник'. 6.7. Магнитный биполярный диод. 6.8. Спиновый транзистор.

Тема 7. Точечные магнитные контакты Сверхпроводящая спинтроника *пекционное занятие (6 часа(ов)):*

7.1. Омический и баллистический транспорт. 7.2. Магнитосопротивление точечных контактов из ферромагнитных материалов. 7.3. Квантование проводимости в ферромагнитных наноконтактах, квантовый спиновый клапан. 7.4. Сверхпроводящие контакты и переходы с ферромагнитной прослойкой. Пи-контакты. 7.5. Спиновые вентили на основе эффекта близости. 7.6. Эффект Джозефсона в С/Ф/С контактах, сверхпроводящая память и логика га основе С/Ф/С контактов.

Тема 8. Аттестация

лекционное занятие (2 часа(ов)):

8.1. Туннельные гетероструктуры с несколькими магнитными слоями. 8.2. Спин-вентильный транзистор

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы	
1.	Тема 1. Магнитные взаимодействия и магнитные структуры	8	1	подготовка к устному опросу	2	устный опрос	
2	Тема 2. Ферромагнитные металлы	8	/5	подготовка к устному опросу	4	устный опрос	
3	Тема 3. Транспорт носителей тока в немагнитных металлах и полупроводниках	8	l 4-5	подготовка к устному опросу	4	устный опрос	
4.	Тема 4. Спин-зависящий транспорт в магнитных металлах, полупроводниках и гетероструктурах	8	n-/	подготовка к устному опросу	6	устный опрос	

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
5.	Тема 5. Гигантское магнитосопротивление (ГМС) Туннельное магнитосопротивление	8	8-12	подготовка к письменной работе	6	письменная работа
6.	Тема 6. Спиновые клапаны (вентили) и спин-электронные устройства для записи информации Другие применения спин-поляризованного транспорта	8	1.5-16	подготовка к устному опросу	6	устный опрос
7.	Тема 7. Точечные магнитные контакты Сверхпроводящая спинтроника	8	1 1/-10	подготовка к устному опросу	6	устный опрос
8.	Тема 8. Аттестация	8		подготовка к письменной работе	2	письменная работа
	Итого				36	

5. Образовательные технологии, включая интерактивные формы обучения

Лекции, самостоятельная работа студента, письменные работы, консультации. Лекционные занятия предполагают использование аудитории, оснащенной современным мультимедийным оборудованием.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Магнитные взаимодействия и магнитные структуры

устный опрос, примерные вопросы:

Обменные взаимодействия. Ферромагнитный порядок. Антиферромагнетизм, ферримагнетизм. (OK-11, ПК-1, ПК-2).

Тема 2. Ферромагнитные металлы

устный опрос, примерные вопросы:

Модель Мотта зоны проводимости ферромагнитных металлов Модель взаимодействие между локализованными и делокализованными электронами в проводящих магнетиках. Классическая теория Друде-Лоренца. Кинетическое уравнение Больцмана. Магнетосопротивление металлов и полупроводников. Эффект Холла. Метод функций Грина. Формула Кубо для проводимости. Зарядовый и спиновый токи. Спиновый эффект Холла (внутренне присущий). Модели Рашбы и Дрессельхауза. (ОК-11, ПК-1, ПК-2).

Тема 3. Транспорт носителей тока в немагнитных металлах и полупроводниках

устный опрос, примерные вопросы:

Дефазирование и рассеяние электронов с переворотом спина, кинетическое уравнение. Анизотропное магнитосопротивление. Граничное сопротивление, спиновое рассеяние на интерфейсе. Спиновый эффект Холла (за счет рассеяния). (ОК-11, ПК-1, ПК-2).

Тема 4. Спин-зависящий транспорт в магнитных металлах, полупроводниках и гетероструктурах

устный опрос, примерные вопросы:

Спин-поляризованный ток в структурах металл-ферромагнитный полупроводник. Спиновый диод на структурах металл-ферромагнитный полупроводник. Спиновые фильтры на основе структуры ферромагнитный полупроводник-полупроводник. (ОК-11, ПК-1, ПК-2, ПК-3).

Тема 5. Гигантское магнитосопротивление (ГМС) Туннельное магнитосопротивление письменная работа , примерные вопросы:

Обменные взаимодействия, ферромагнетизм. Двухжидкостная модель проводимости ферромагнитных металлов. Зарядовые и спиновые токи. Магнитосопротивление металлов и полупроводников. Эффект Холла, определение знака заряда носителей тока. Рассеяние электронов с переворотом спина. Спин-зависящее граничное сопротивление. ГМС в металлических мультислоях, параллельная геометрия. ГМС в металлических мультислоях, перпендикулярная геометрия. Спин-зависящее туннелирование электронов в гетероструктурах с диэлектрическими барьерами. Туннельное магнитосопротивление. (ОК-4, ОК-11, ОК-14, ПК-1, ПК-2, ПК-3, ПК-6).

Тема 6. Спиновые клапаны (вентили) и спин-электронные устройства для записи информации Другие применения спин-поляризованного транспорта

устный опрос, примерные вопросы:

Магнитный биполярный диод. Спиновый транзистор. Магниторезистивная память на металлических гетероструктурах. Магниторезистивная память на туннельных гетероструктурах, переключение магнитных состояний спин-поляризованным током. Развязки на основе эффектов гигантского магнитосопротивления. (ОК-11, ПК-1, ПК-2, ПК-3, ПК-6).

Тема 7. Точечные магнитные контакты Сверхпроводящая спинтроника

устный опрос, примерные вопросы:

Омический и баллистический транспорт, магнитосопротивление наноконтактов. Эффект Джозефсона в С/Ф/С контактах, пи-контакты. Сверхпроводящая память и логика на основе С/Ф/С контактов. (ОК-11, ПК-1, ПК-2, ПК-3, ПК-6).

Тема 8. Аттестация

письменная работа, примерные вопросы:

Спиновые диоды и спиновые фильтры. Магниторезистивная память на металлических и туннельных гетероструктурах. Туннельные гетероструктуры с несколькими магнитными слоями, переключение спин-поляризованным током. Магнитосопротивление точечных наноконтактов. Джозефсоновские контакты с ферромагнитной слабой связью. Сверхпроводящие спинтронные устройства. Туннельные гетероструктуры с несколькими магнитными слоями, спин-вращательный эффект. Спин-вентильный транзистор. (ОК-4, ОК-11, ОК-14, ПК-1, ПК-2, ПК-3, ПК-6).

Итоговая форма контроля

зачет

Примерные вопросы к зачету:

Текущий контроль успеваемости осуществляется на основании письменных работ по индивидуальным заданиям. Итоговый контроль осуществляется в форме устного зачета по лекционному курсу. Самостоятельная работа студентов заключается в повторении лекционного материала (конспекты лекций), изучении материала, вынесенного на самостоятельное изучение (рекомендованная литература), выполнении индивидуальных заданий.

РАСПРЕДЕЛЕНИЕ БАЛЛОВ БАЛЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЫ (сумма=100)

- [1] Текущая работа студента (активность на лекциях) 10
- [2] Письменные работы (2) 40
- [3] Зачет 50

Методические указания к выполнению письменных работ и полный список вопросов к письменным работам и зачету находятся в Приложениях 1 и 2, соответственно.

Примерные вопросы к зачету:

- 1. Двухжидкостная модель проводимости ферромагнитных металлов.
- 2. Зарядовый и спиновый токи в гетероструктурах.
- 3. Объемное и поверхностное спин-зависящее рассеяние электронов.
- 4. Механизмы магнитосопротивления в магнитных гетероструктурах параллельный транспорт, перпендикулярный транспорт.
- 5. Туннельные гетероструктуры, спин-зависящее туннелирование.
- 6. Механизмы туннельного магнитосопротивления.
- 7. Спинтронные приборы на основе гигантского магнитосопротивления (ГМС).
- 8. Головки чтения и ГМС-развязки на основе магнитных гетероструктур.
- 9. Энергонезависимая память на основе ГМС.
- 10. Туннельное магнитосопротивление.
- 11. Туннельные гетероструктуры с несколькими магнитными слоями. Переключение магнитных состояний спин-поляризованным током.
- 12. Спин-вентильный транзистор.
- 13. Энергонезависимая память на основе гигантского магнитосопротивления и на основе туннельного магнитосопротивления.
- 14. Джозефсоновские пи-контакты и их приложения к сверхпроводящей спинтронике.

7.1. Основная литература:

- 1. Борисенко, В.Е. Наноэлектроника: теория и практика [Электронный ресурс] / В.Е. Борисенко, А.И. Воробьева, Е.А. Уткина, А.Л. Данилюк. М.: Издательство 'Лаборатория знаний', 2015. 369 с. -Режим доступа: http://e.lanbook.com/book/84103
- 2. Кузнецов, Н.Т. Основы нанотехнологии [Электронный ресурс] / Н.Т. Кузнецов, В.М. Новоторцев, В.А. Жабрев, В.И. Марголин. М.: Издательство 'Лаборатория знаний', 2017. 400 с. Режим доступа: http://e.lanbook.com/book/94129
- 3. Шишкин, Г.Г. Наноэлектроника. Элементы, приборы, устройства [Электронный ресурс] / Г.Г. Шишкин, И.М. Агеев. М.: Издательство 'Лаборатория знаний', 2015. 411 с. Режим доступа: http://e.lanbook.com/book/66208

7.2. Дополнительная литература:

- 1. Барыбин, А.А. Физико-технологические основы макро-, микро- и наноэлектроники [Электронный ресурс] / А.А. Барыбин, В.И. Томилин, В.И. Шаповалов. М. : Физматлит, 2011. 784 с. Режим доступа: http://e.lanbook.com/book/5258
- 2. Щука, А.А. Наноэлектроника. [Электронный ресурс] / А.А. Щука. М. : Издательство 'Лаборатория знаний', 2015. 345 с. Режим доступа: http://e.lanbook.com/book/84102

7.3. Интернет-ресурсы:

Информационный бюллетень - http://perst.isssph.kiae.ru/Inform/index_tem.htm нанотехнологическое сообщество Нанометр - www.nanometer.ru Новости спинтроники - http://www.spintronics-info.com/
Сайт о нанотехнологиях в России - http://www.nanonewsnet.ru/
элементы большой науки - http://elementy.ru/lib/14?page_design=print

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Спинтроника" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе " БиблиоРоссика", доступ к которой предоставлен студентам. В ЭБС " БиблиоРоссика " представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Аудитория, оснащенная современным мультимедийным оборудованием.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 03.03.03 "Радиофизика" и профилю подготовки Физика магнитных явлений.

Автор(ы): 				
Тагиров Л.Р			 	
"	_ 201 _	 Г.		
Рецензент(ы):				
Деминов Р.Г.				
" "	201	Г.		