МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

УТВЕРЖДАЮ

Программа дисциплины

Формирование сигналов и их оптимальная обработка Б1.В.ОД.2

Направление подготовки: 03.04.03 - Радиофизика					
Профиль подготовки: Информационные процессы и системы					
Квалификация выпускника: <u>магистр</u>					
Форма обучения: очное					
Язык обучения: <u>русский</u>					
Автор(ы):					
<u>Ишмуратов Р.А.</u>					
Рецензент(ы):					
Карпов А.В.					
СОГЛАСОВАНО:					
Заведующий(ая) кафедрой: Шерстюков О. Н.					
Протокол заседания кафедры No от "" 201г					
Учебно-методическая комиссия Института физики: Протокол заседания УМК No от " " 201 г					
протокол саосдания / ник но ст					
Регистрационный No					
Казань					

2017

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) Ишмуратов P.A., Rashid.lshmuratov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины 'Формирование сигналов и их оптимальная обработка' являются изучение современной теории моделей сигналов, применяемых в радиофизике и электронике; освоение алгоритмов формирования и обработки сигналов и их программная и аппаратная реализация; компьютерное моделирование и анализ сигналов, которые получили широкое распространение в современных информационных радиотелекоммуникационных системах.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.2 Дисциплины (модули)" основной образовательной программы 03.04.03 Радиофизика и относится к обязательным дисциплинам. Осваивается на 1 курсе, 2 семестр.

Дисциплина 'Формирование сигналов и их оптимальная обработка' является обязательной частью профессиональной подготовки магистров по направлению 03.04.03 - Радиофизика, профиль 'Информационные процессы и системы'.

Дисциплина 'Формирование сигналов и их оптимальная обработка' базируется на материалах дисциплин ООП бакалавриата по направлению 03.03.03 - Радиофизика: базовых дисциплин блока математики и дисциплин профессионального блока; основы радиоэлектроники, радиофизика и электроника, цифровая обработка сигналов.

Поскольку сигнал является материальным носителем информации, знание его свойств позволяет глубже понять особенности функционирования информационных и телекоммуникационных систем, изучаемых в других специальных дисциплинах бакалавриата.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-4 (профессиональные компетенции)	способность внедрять результаты прикладных научных исследований в перспективные приборы, устройства и системы, основанные на колебательно-волновых принципах функционирования
ОПК-3 (профессиональные компетенции)	способность к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимых для решения научно-исследовательских задач
ПК-2 (профессиональные компетенции)	способность самостоятельно ставить научные задачи в области физики и радиофизики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта

В результате освоения дисциплины студент:

1. должен знать:

основные понятия и законы электричества и магнетизма, физики колебаний и волн; основы математического анализа, аналитической геометрии, линейной алгебры, векторного анализа, функционального анализа, математической статистики, основные численные методы математического моделирования;

современные информационные технологии, прикладные программные пакеты и программирование.

2. должен уметь:

применять математические методы и модели для описания сигналов с целью их формирования для применения на практике;

проводить всесторонний анализ сигналов, оценивать свойства и потенциальные возможности сигналов при их целевом использовании в радиосистемах различного назначения.

3. должен владеть:

математическим аппаратом для проведения всестороннего анализа сигналов, навыками самостоятельной разработки новых моделей сигналов и выборе процедур оптимальной обработки сигналов, информационными технологиями моделирования сигналов и исследования их свойств, программными и аппаратными средствами реализации процедур преобразования и обработки сигналов.

4. должен демонстрировать способность и готовность:

способность и готовность использовать в образовательной и профессиональной деятельности базовые и специальные знания в области математических, естественных и технических наук.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	-
1	Тема 1. Основные положения теории . аналоговых сигналов и их преобразование в аналоговых системах	2	1-3	2	0	0	
2	Тема 2. Модулированные сигналы	2	4-6	2	4	0	
3	Тема 3. Модуляция цифровых сигналов	2	7-9	4	4	0	

ľ	Раздел I Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	лабораторные работы	•
4	Тема 4. Цифровые сигналы и цифровая обработка сигналов	2	10-12	2	2	0	
5	Тема 5. Применение информационных технологий в теории сигналов	2	13-16	4	4	0	
	Тема . Итоговая форма контроля	2		0	0	0	зачет
	Итого			14	14	0	

4.2 Содержание дисциплины

Тема 1. Основные положения теории аналоговых сигналов и их преобразование в аналоговых системах

лекционное занятие (2 часа(ов)):

Сигнал. Определение. Параметры сигнала. Математическое описание сигнала. Классификация сигналов. Синусоидальный сигнал, прямоугольный сигнал, треугольный сигнал, гауссов импульс. Меандр. Дельта-функция Дирака. Разложение периодического сигнала в ряд Фурье. Квадратурная (синус-косинусная) и спектральная форма ряда Фурье. Их связь. Понятие спектра. Амплитудный и фазовый спектры сигнала. Синтез сигнала и эффект Гиббса. Комплексная форма ряда Фурье. Отрицательная частота. Интегральное преобразование Фурье. Спектральная плотность основных типов сигналов. Комплексная частота и преобразование Лапласа. Геометрическая модель сигнала. Сигнал как вектор в пространстве ортогонального базиса. Комплексная огибающая. Корреляционная теория сигналов.

Тема 2. Модулированные сигналы *лекционное занятие (2 часа(ов)):*

Модулированные сигналы. Виды модуляции сигналов: АМ, ЧМ, ФМ. Квадратурная модуляция. Свойства модулированных сигналов. Формирование и детектирование модулированных сигналов. Синхронное детектирование. Схемные реализации модулятора и демодулятора. Модулированные импульсные последовательности: АИМ, ШИМ, ВИМ (ФИМ). Сигналы для передачи цифровых (бинарных) данных? цифровые сигналы. Виды цифрового кодирования. Потенциальный код. Манчестерский код. Многопозиционное кодирование.

практическое занятие (4 часа(ов)):

Моделирование и анализ сигналов различного типа и параметров.

Тема 3. Модуляция цифровых сигналов

лекционное занятие (4 часа(ов)):

Модуляция цифровых сигналов (манипуляция). Различные способы модуляции (манипуляция) цифровых сигналов для достижения оптимальных характеристик модулированных сигналов: АМ (ASK), QAM, PSK, FSK, MSK, GMSK. Дифференциальная бинарная манипуляция. Модулированные сигналы с расширенным спектром. Многомерная ортогональная модуляция. ОFDM. Функции Радемахера и понятие ортогонального базиса. Функции Уолша. Формирование сигнала в системах с кодовым разделением каналов.

практическое занятие (4 часа(ов)):

Исследование модулированных сигналов с различным типом модуляции.

Тема 4. Цифровые сигналы и цифровая обработка сигналов *лекционное занятие (2 часа(ов)):*

Цифровые сигналы и интерпретация термина в широком и узком (строгом) смысле. Дискретизация и квантование. Теорема Котельникова. Дискретное преобразование Фурье. Формула дискретной свертки. Разностное уравнение. Нерекурсивный и рекурсивный фильтры. Цифровой спектральный анализ и статистическая обработка временных рядов. Алгоритмы цифрового спектрального оценивания. Периодограмм-анализ. Разрешающая способность и искажения спектра. Параметрические методы спектрального оценивания. Динамический спектр. Вейвлет-преобразование. Понятие вейвлета. Типы вейвлетов. Применение вейвлет-преобразования для спектрального оценивания сигналов. Применение вейвлетов для цифровой фильтрации.

практическое занятие (2 часа(ов)):

Цифровой спектральный анализ.

Тема 5. Применение информационных технологий в теории сигналов *пекционное занятие (4 часа(ов)):*

Математические прикладные пакеты. Моделирование в среде компьютерной математики MathCAD. Функции обработки и моделирования сигналов в прикладном программном пакете MATLAB. Моделирование и реализация цифровой обработки сигналов в графических системах Simulink и LabVIEW.

практическое занятие (4 часа(ов)):

Моделирование сигналов и их обработка в средах компьютерной математики и системах графического моделирования.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Основные положения теории аналоговых сигналов и их преобразование в аналоговых системах	2	1 1-3	Подготовка к устному опросу	8	Устный опрос
2.	Тема 2. Модулированные сигналы	2	1 4-h	Подготовка к устному опросу	8	Устный опрос
3.	Тема 3. Модуляция цифровых сигналов	2	1 /-4	Подготовка к устному опросу	10	Устный опрос
4.	Тема 4. Цифровые сигналы и цифровая обработка сигналов	2	()- /	Подготовка к устному опросу	10	Устный опрос
5.	Тема 5. Применение информационных технологий в теории сигналов	2	I 1.3-ID	Подготовка к устному опросу	8	Устный опрос
	Итого				44	

5. Образовательные технологии, включая интерактивные формы обучения

Используются следующие формы учебной работы: лекции, практические занятия, самостоятельная работа студента, консультации.

Материал курса лекций и практических занятий компилируется из различных источников, часть которых представлена в списке литературы. Поэтому самостоятельная работа студентов играет важную роль в освоении дисциплины.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основные положения теории аналоговых сигналов и их преобразование в аналоговых системах

Устный опрос, примерные вопросы:

1. Основные положения теории сигналов. 2. Векторное представление синусоидального сигнала. 3. Разложение периодического сигнала в ряд Фурье. Понятие спектра сигнала. 4. Преобразование Фурье и преобразование Лапласа. 5. Спектры основных типов сигналов ? прямоугольные, треугольные, Гаусса.

Тема 2. Модулированные сигналы

Устный опрос, примерные вопросы:

1. Модулированные сигналы. Типы модуляции ? АМ, ЧМ, ФМ. Их сравнительные характеристики. 2. Модуляция и демодуляция сигналов. Синхронное детектирование. 3. Узкополосные и широкополосные помехи. Белый шум и его частотные и статистические характеристики.

Тема 3. Модуляция цифровых сигналов

Устный опрос, примерные вопросы:

1. Модуляция цифровых сигналов и характеристики модулированных сигналов. 2. Основные современные способы модуляции цифровых сигналов (типы цифровой манипуляции). 3. Типы цифровой манипуляции с повышенными требованиями к характеристикам модулированного сигнала.

Тема 4. Цифровые сигналы и цифровая обработка сигналов

Устный опрос, примерные вопросы:

1. Цифровая обработка сигналов. Основные положения. 2. Цифровая фильтрация и синтез цифровых фильтров. 3. Нерекурсивные цифровые фильтры. 4. Рекурсивные цифровые фильтры. 5. Сравнительный анализ цифровых фильтров различного типа.

Тема 5. Применение информационных технологий в теории сигналов

Устный опрос, примерные вопросы:

- 1. Функции обработки и моделирования сигналов в среде компьютерной математики MATLAB.
- 2. Моделирование и обработка сигналов в среде компьютерной математики MatCAD. 3. Моделирование и обработка сигналов в системах графического моделирования.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

- 1. Основные положения теории сигналов.
- 2. Векторное представление синусоидального сигнала.
- 3. Разложение периодического сигнала в ряд Фурье. Понятие спектра сигнала.
- 4. Преобразование Фурье и преобразование Лапласа.
- 5. Спектры основных типов сигналов прямоугольные, треугольные, Гаусса.
- 6. Модулированные сигналы. Типы модуляции АМ, ЧМ, ФМ. Их сравнительные характеристики.
- 7. Модуляция и демодуляция сигналов. Синхронное детектирование.
- 8. Узкополосные и широкополосные помехи. Белый шум и его частотные и статистические характеристики.
- 9. Основные положения теории преобразования сигналов в электрических системах.
- 10. Амплитудная характеристика четырехполюсника.
- 11. Импульсная характеристика линейной стационарной системы.
- 12. Комплексный частотный коэффициент передачи.

- 13. Избирательные цепи и фильтрация сигналов.
- 14. Цифровые сигналы. Основные положения.
- 15. Теорема Котельникова Найквиста.
- 16. Дискретное преобразование Фурье (ДПФ). Косинусное преобразование Фурье.
- 17. Алгоритм быстрого преобразования Фурье.
- 18. Теория z-преобразования.
- 19. Цифровая обработка сигналов. Основные положения.
- 20. Цифровая фильтрация и синтез цифровых фильтров.
- 21. Нерекурсивные цифровые фильтры.
- 22. Рекурсивные цифровые фильтры.
- 23. Сравнительный анализ цифровых фильтров различного типа.
- 24. Модуляция цифровых сигналов и характеристики модулированных сигналов.
- 25. Основные современные способы модуляции цифровых сигналов (типы цифровой манипуляции).
- 26. Типы цифровой манипуляции с повышенными требованиями к характеристикам модулированного сигнала.
- 27. Цифровой спектральный анализ. Непараметрические методы спектрального анализа и эффект растекания спектра.
- 28. Параметрические методы спектрального анализа
- 29. Понятие вейвлета. Использование теории вейвлетов для спектрального оценивания.
- 30. Применение вейвлетов для цифровой фильтрации.
- 31. Статистическая обработка временных рядов.
- 32. Корреляционный анализ сигналов.
- 33. Цифровое кодирование сигналов. Методы кодирования.
- 34. Избыточное кодирование и корректирующие коды.
- 35. Функции обработки и моделирования сигналов в прикладных программных пакетах.
- 36. Моделирование и обработка сигналов в системах графического моделирования.

7.1. Основная литература:

- 1. Першин В. Т. Формирование и генерирование сигналов в цифровой радиосвязи: Учебное пособие / В.Т. Першин. М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2013. 614 с.
- http://znanium.com/bookread.php?book=405030
- 2. Подлесный, С. А. Устройства приема и обработки сигналов [Электронный ресурс] : Учеб. пособие / С. А. Подлесный, Ф. В. Зандер. Красноярск : Сиб. федер. ун-т, 2011. 352 с. http://znanium.com/bookread.php?book=441113
- 3. Сергиенко А. Б. Цифровая обработка сигналов: учеб. пособие. 3-е изд. СПб.: БХВ-Петербург, 2011. 768 с. (Учебная литература для вузов).

http://znanium.com/bookread.php?book=354905

7.2. Дополнительная литература:

- 1. Залманзон Л. А.. Преобразование Фурье, Уолша, Хаара и их применение в управлении, связи и других областях. М.: Наука ,1989. 493стр.
- 2. Акимов П.С., Сенин А.И., Соленов В.И. Сигналы и их обработка в информационных системах. М.: Радио и связь. 1994.-256 стр.
- 3. Баскаков С.И. Радиотехнические цепи и сигналы.-М.:Высш.шк. 2003.-462с.
- 4. Смоленцев Н.К. Основы теории вейвлетов. Вейвлеты в МАТLAB. -М.:ДМК Пресс, 2005.-304 с.

5. Гантмахер В.Е., Быстров Н.Е., Чеботарев Д.В. Шумоподобные сигналы; анализ,синтез, обработка. - СПб.: Наука и техника. 2005. - 396 с.

7.3. Интернет-ресурсы:

Единое окно доступа к образовательным ресурсам электронной библиотеки - http://window.edu.ru

Научная электронная библиотека книг и журналов - http://www.elibrary.ru

Научно-технический периодический журнал - http://cta.ru

Научно-технический периодический журнал "Современная электроника" - http://se.ru

Русскоязычный электронный ресурс Microsoft Developer Network -

http://msdn.microsoft.com/ru-ru/

Техническая библиотека - http://www.techlibrary.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Формирование сигналов и их оптимальная обработка" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Программное обеспечение персональных компьютеров:

Micrsft Windws 7
Micrsft Office 2010
Micrsft Visual Studi 2010

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 03.04.03 "Радиофизика" и магистерской программе Информационные процессы и системы.

Автор(ы):		
Ишмурато	в Р.А	
""_	201 г.	
Рецензент Карпов А.І	` '	
" "	201 г.	