МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

УТВЕРЖДАЮ

Программа дисциплины

История и методология математики Б1.Б.2

Направление подготовки: <u>01.04.01 - Математика</u> Профиль подготовки: <u>Алгебра</u> Квалификация выпускника: <u>магистр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
Тронин С.Н.
Рецензент(ы):
Абызов А.Н.
СОГЛАСОВАНО: Заведующий(ая) кафедрой: Арсланов М. М. Протокол заседания кафедры No от "" 201г Учебно-методическая комиссия Института математики и механики им. Н.И. Лобачевского : Протокол заседания УМК No от " 201 г
· —— —— —— —— ——
Регистрационный No
Казань
2016

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (доцент) Тронин С.Н. Кафедра алгебры и математической логики отделение математики, Serge.Tronin@kpfu.ru

1. Цели освоения дисциплины

Дисциплина 'История и методология математики' предназначена для формирования у студентов ясного представления о сущности той науки, которую они изучают. Набор отдельных частных специальных дисциплин, к тому же с уклоном в одну конкретную узкую специализацию, такое представление формирует не в полной мере. Изложение истории математики, в котором достаточно подробно рассказывается о ключевых этапах ее развития (в частности, о теории множеств и теории категорий), с упором на современное состояние этой науки, призвано развить у будущих профессиональных математиков широкий кругозор, и дать им некоторый запас знаний о важнейших разделах математики за пределами их (студентов) узкой специализации. Ключевым вопросом является также вопрос о том, что такое математика. Он весьма непрост, и его обсуждение также будет способствовать развитию эрудиции и творческого мышления слушателей курса.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.Б.2 Дисциплины (модули)" основной образовательной программы 01.04.01 Математика и относится к базовой (общепрофессиональной) части. Осваивается на 2 курсе, 3 семестр.

Как уже отмечено выше, курс по истории и методологии математики должен быть тем курсом, где дается общий взгляд на математику в целом, и осуществляется синтез многих разрозненных частей полученной на предыдущем этапе обучения (в бакалавриате) информации.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-1 (общекультурные компетенции)	Расшифровка
ОК-2 (общекультурные компетенции)	Расшифровка
ОК-3 (общекультурные компетенции)	Расшифровка
ОПК-1 (профессиональные компетенции)	Расшифровка
ОПК-2 (профессиональные компетенции)	Расшифровка
ОПК-5 (профессиональные компетенции)	Расшифровка
ПК-1 (профессиональные компетенции)	Расшифровка

Шифр компетенции	Расшифровка приобретаемой компетенции
ΠK-10	
(профессиональные компетенции)	Расшифровка
ΠK-11	
(профессиональные компетенции)	Расшифровка
ΠK-12	
(профессиональные компетенции)	Расшифровка
ПК-2	
(профессиональные компетенции)	Расшифровка
ПК-3	
(профессиональные компетенции)	Расшифровка
ПК-6	Decumenta
(профессиональные компетенции)	Расшифровка

В результате освоения дисциплины студент:

1. должен знать:

Студент должен знать основные этапы развития математики. Иметь представление об основных открытиях, оказавших решающее воздействие на формирование математического знания. Знать главные особенности общих математических методов (аксиоматического, теоретико-множественного, теоретико-категорного и т.д.). Знать основные определения математики как науки, и основные вопросы, которые пытается решить современная философия математики.

2. должен уметь:

Студент должен уметь ориентироваться в истории математики, владеть основами терминологического и понятийного аппарата этой науки, а также уметь отвечать на основные вопросы, связанные с сущностью математики и ее ролью в современном мире.

3. должен владеть:

Студент должен владеть основами терминологического и понятийного аппарата этой науки, а также ориентироваться в специальной литературе по теме курса.

Студент должен демонстрировать способность и готовность к самостоятельному изучению различных частных вопросов, относящихся к истории и методологии математики, к написанию рефератов, к выступлениям с докладами, и к дискуссиям по темам, относящимся к данному предмету. Самостоятельный поиск информации, способность к творческой обработке этой информации, с последующими возможными нестандартными выводами - главная цель, которая ставится при чтении данного курса.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.); 54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах	Текущие формы контроля	
				Лекции	Практические занятия	, Лабораторные работы	
	Тема 1. Основные периоды в развитии математики. Период элементарной математики. Древнегреческая математика	3	1	1	1	0	устный опрос
	Тема 2. Основные периоды в развитии математики. Математика переменных величин.	3	2	1	1	0	устный опрос
1 5	Тема 3. Основные периоды в развитии математики. Современный период.	3	3	1	1	0	устный опрос
4.	Тема 4. Н.И.Лобачевский и создание неевклидовых геометрий.	3	4	1	1	0	устный опрос
17	Тема 5. Что такое математика. Обзор некоторых точек зрения.	3	5	1	1	0	реферат
Ю.	Тема 6. Аксиоматический метод в математике. Формализация. Математическое доказательство.	3	6	1	1	0	устный опрос
	Тема 7. Теория множеств и ее роль в современной математике.	3	7	1	1	0	устный опрос
1 22	Тема 8. Кризисы в математике. Парадоксы в теории множеств.	3	8	1	1	0	устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
9.	Тема 9. Программы обоснования математики начала XX века: логицизм (Г.Фреге, Б.Рассел, А.Н.Уайтхед), интуиционизм (Л.Э.Я.Брауэр, Г.Вейль), формализм (программа Д.Гильберта).	3	9	1	1	0	устный опрос
10.	Тема 10. Теоремы Геделя и их значение.	3	10	1	1	0	реферат
	Тема 11. Математика XX века. Алгебра. Логика. Топология. Прикладная математика. Компьютеры. Теория категорий и топосов.	3	11, 12	2	2	0	устный опрос
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			12	12	0	

4.2 Содержание дисциплины

Тема 1. Основные периоды в развитии математики. Период элементарной математики. Древнегреческая математика

лекционное занятие (1 часа(ов)):

Период элементарной математики. Древнегреческая математика. Фалес, Пифагор, Архимед. Платон, Аристотель.

практическое занятие (1 часа(ов)):

"Начала" Евклида.

Тема 2. Основные периоды в развитии математики. Математика переменных величин.

лекционное занятие (1 часа(ов)):

Математика переменных величин. Декарт, Ньютно, Лейбниц.

практическое занятие (1 часа(ов)):

Эйлер и метематика 18-го века.

Тема 3. Основные периоды в развитии математики. Современный период.

лекционное занятие (1 часа(ов)):

Обзор современного периода, начиная с открытия неевклидовых геометрий.

практическое занятие (1 часа(ов)):

Создание символической логики.

Тема 4. Н.И.Лобачевский и создание неевклидовых геометрий.

лекционное занятие (1 часа(ов)):

Биография Лобачевского. Значение неевклидовых геометрий.

практическое занятие (1 часа(ов)):

Бельтрами, Риман, Пуанкаре, Клейн.

Тема 5. Что такое математика. Обзор некоторых точек зрения.

лекционное занятие (1 часа(ов)):

Николя Бурбаки и его математические структуры. Теоретико-категорный подход. Ален Бадью: математика как онтология.

практическое занятие (1 часа(ов)):

Определение математики, данное Энгельсом.

Тема 6. Аксиоматический метод в математике. Формализация. Математическое доказательство.

лекционное занятие (1 часа(ов)):

Три этапа развития аксиоматического метода.

практическое занятие (1 часа(ов)):

Аксиоматика Евклида

Тема 7. Теория множеств и ее роль в современной математике.

лекционное занятие (1 часа(ов)):

Георг Кантор. Актуальная бесконечность. Типы бесконечных множеств. Гипотеза континуума.

практическое занятие (1 часа(ов)):

Диагональный метод.

Тема 8. Кризисы в математике. Парадоксы в теории множеств.

лекционное занятие (1 часа(ов)):

Три кризиса оснований математики.

практическое занятие (1 часа(ов)):

Парадокс Рассела.

Тема 9. Программы обоснования математики начала XX века: логицизм (Г.Фреге, Б.Рассел, А.Н.Уайтхед), интуиционизм (Л.Э.Я.Брауэр, Г.Вейль), формализм (программа Д.Гильберта).

лекционное занятие (1 часа(ов)):

Программа Гильберта.

практическое занятие (1 часа(ов)):

Логицизм, интуиционизм.

Тема 10. Теоремы Геделя и их значение.

лекционное занятие (1 часа(ов)):

Теорема Геделя о неполноте.

практическое занятие (1 часа(ов)):

Аналоги теоремы Геделя в других науках.

Тема 11. Математика XX века. Алгебра. Логика. Топология. Прикладная математика. Компьютеры. Теория категорий и топосов.

лекционное занятие (2 часа(ов)):

Теория категорий и топосов.

практическое занятие (2 часа(ов)):

Компьютеры и прикладная математика.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 1. Основные периоды в развитии математики. Период элементарной математики. Древнегреческая математика	3	l I	подготовка к устному опросу	2	устный опрос
	Тема 2. Основные периоды в развитии математики. Математика переменных величин.	3		подготовка к устному опросу	2	устный опрос
3.	Тема 3. Основные периоды в развитии математики. Современный период.	3		подготовка к устному опросу	2	устный опрос
4.	Тема 4. Н.И.Лобачевский и создание неевклидовых геометрий.	3	. 4	подготовка к устному опросу	2	устный опрос
5.	Тема 5. Что такое математика. Обзор некоторых точек зрения.	3	5	подготовка к реферату	2	реферат
ın	Тема 6. Аксиоматический метод в математике. Формализация. Математическое доказательство.	3	l h	подготовка к устному опросу	2	устный опрос
7.	Тема 7. Теория множеств и ее роль в современной математике.	3	/	подготовка к устному опросу	2	устный опрос
	Тема 8. Кризисы в математике. Парадоксы в теории множеств.	3	. x	подготовка к устному опросу	2	устный опрос
9.	Тема 9. Программы обоснования математики начала XX века: логицизм (Г.Фреге, Б.Рассел, А.Н.Уайтхед), интуиционизм (Л.Э.Я.Брауэр, Г.Вейль), формализм (программа Д.Гильберта).	3	. 9	подготовка к устному опросу	8	устный опрос
10.	Тема 10. Теоремы Геделя и их значение.	3	10	подготовка к реферату	14	реферат

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
11.	Тема 11. Математика XX века. Алгебра. Логика. Топология. Прикладная математика. Компьютеры. Теория категорий и топосов.	3		подготовка к устному опросу	10	устный опрос
	Итого				48	

5. Образовательные технологии, включая интерактивные формы обучения

Лекции, практические занятия, устные опросы, дискуссии, доклады, рефераты, поиск литературы для рефератов, в том числе в Интернете.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Основные периоды в развитии математики. Период элементарной математики. Древнегреческая математика

устный опрос, примерные вопросы:

Творцы древнегреческой математики.

Тема 2. Основные периоды в развитии математики. Математика переменных величин.

устный опрос, примерные вопросы:

Люди, которые создали в 17-м и 18-м веках высшую математику.

Тема 3. Основные периоды в развитии математики. Современный период.

устный опрос, примерные вопросы:

Основные события в математике 19-го века.

Тема 4. Н.И. Лобачевский и создание неевклидовых геометрий.

устный опрос, примерные вопросы:

Основные события в биографии Лобачевского. Значение создания неевклидовой геометрии.

Тема 5. Что такое математика. Обзор некоторых точек зрения.

реферат, примерные темы:

Николя Бурбаки.

Тема 6. Аксиоматический метод в математике. Формализация. Математическое доказательство.

устный опрос, примерные вопросы:

Начала Евклида. Д.Гильберт и основания геометрии.

Тема 7. Теория множеств и ее роль в современной математике.

устный опрос, примерные вопросы:

Типы актуально бесконечных множеств. Актуальная и потернциальная бесконечности.

Тема 8. Кризисы в математике. Парадоксы в теории множеств.

устный опрос, примерные вопросы:

Три коизиса оснований математики, и как они были преодолены.

Тема 9. Программы обоснования математики начала XX века: логицизм (Г.Фреге, Б.Рассел, А.Н.Уайтхед), интуиционизм (Л.Э.Я.Брауэр, Г.Вейль), формализм (программа Д.Гильберта).

устный опрос, примерные вопросы:

Основные положения логицизма и интуиционизма.

Тема 10. Теоремы Геделя и их значение.

реферат, примерные темы:

Задачи тысячелетия (Millenium Prize Problems)

Тема 11. Математика XX века. Алгебра. Логика. Топология. Прикладная математика. Компьютеры. Теория категорий и топосов.

устный опрос, примерные вопросы:

Сондерс Маклейн, Уильям Ловер, и создание теории топосов.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Вопросы билетов

- 1. Основные периоды в развитии математики. Период элементарной математики. Древнегреческая математика
- 2. Основные периоды в развитии математики. Математика переменных величин.
- 3. Основные периоды в развитии математики. XIX век.
- 4. Н.И.Лобачевский и создание неевклидовых геометрий.
- 5. Что такое математика. Обзор некоторых точек зрения.
- 6. Аксиоматический метод в математике. Формализация. Математическое доказательство.
- 7. Теория множеств и ее роль в современной математике.
- 8. Кризисы в математике. Парадоксы в теории множеств.
- 9. Программы обоснования математики начала XX века: логицизм (Г.Фреге, Б.Рассел, А.Н.Уайтхед)
- 10. Программы обоснования математики начала XX века: интуиционизм (Л.Э.Я.Брауэр, Г.Вейль)
- 11. Программы обоснования математики начала XX века: формализм (программа Д.Гильберта).
- 12. Теоремы Геделя и их значение.
- 13. Математика XX века. Алгебра. Логика. Топология. Прикладная математика. Компьютеры. Теория категорий и топосов.

7.1. Основная литература:

История математики от Декарта до середины XIX столетия, Вилейтнер, Генрих;Юшкевич, А. П., 2012г.

Философия математики, физики, химии, биологии, Канке, Виктор Андреевич, 2011г.

Очерки по математическому анализу, Григорьева, Ирина Сергеевна, 2011г.

Философия и теория познания, Лешкевич, Татьяна Геннадьевна, 2013г.

Введение в анализ, Гумеров, Ренат Нельсонович:Султанбеков, Фоат Фаритович, 2011г.

7.2. Дополнительная литература:

Категории для работающего математика, Маклейн, Саундерс; Артамонов, В.А., 2004г.

Российское философское сообщество и трансляция философского знания на рубеже XIX - XX веков, Баранец, Наталья Григорьевна, 2007г.

Элементы комбинаторной и дифференциальной топологии, Прасолов, Виктор Васильевич, 2004г.

Философское сообщество в России, Баранец, Наталья Григорьевна, 2007г.

Элементы теории функций и функционального анализа, Колмогоров, Андрей Николаевич; Фомин, Сергей Васильевич, 2006г.

7.3. Интернет-ресурсы:

Library Genesis - http://gen.lib.rus.ec Библиотека Ихтика - http://ihtik.lib.ru/catalogs_ihtiklib.ru.html Лекториум - https://www.lektorium.tv Общероссийский математический портал - http://www.mathnet.ru Техническая библиотека - http://techlibrary.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "История и методология математики" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе " БиблиоРоссика", доступ к которой предоставлен студентам. В ЭБС " БиблиоРоссика " представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Студенты получают DVD-диск со всей необходимой литературой (практически полностью отсутствующей в библиотеке КФУ).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.04.01 "Математика" и магистерской программе Алгебра.

Автор(ы): Тронин С.Н.	
"	_ 201 г.
Рецензент(ы): Абызов А.Н.	
"	_201 г.