## МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий



#### **УТВЕРЖДАЮ**

## Программа дисциплины

Спектральные задачи математической физики Б1.В.ДВ.2

| Направление подготовки: 01.04.02 - Прикладная математика и информатика                        |
|-----------------------------------------------------------------------------------------------|
| Профиль подготовки: Математическое моделирование                                              |
| <br>Квалификация выпускника: <u>магистр</u>                                                   |
| Форма обучения: <u>очное</u>                                                                  |
| Язык обучения: русский                                                                        |
| Автор(ы):                                                                                     |
| <u>Карчевский Е.М.</u>                                                                        |
| Рецензент(ы):                                                                                 |
| Бахтиева Л.У.                                                                                 |
|                                                                                               |
| СОГЛАСОВАНО:                                                                                  |
| Заведующий(ая) кафедрой: Плещинский Н. Б.<br>Протокол заседания кафедры No от "" 201г         |
| Учебно-методическая комиссия Института вычислительной математики и информационных технологий: |
| Протокол заседания УМК No от "" 201г                                                          |
| Регистрационный No                                                                            |
| Казань                                                                                        |
| 2016                                                                                          |



#### Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (доцент) Карчевский Е.М. Кафедра прикладной математики отделение прикладной математики и информатики , ekarchev@yandex.ru

#### 1. Цели освоения дисциплины

Дисциплина знакомит студентов с методами численного решения интегральных уравнений, возникающих в некоторых задачах спектральной теории диэлектрических волноводов. Студенты приобретают навыки практического решения задач спектральной теории диэлектрических волноводов с помощью системы Matlab

## 2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.2 Дисциплины (модули)" основной образовательной программы 01.04.02 Прикладная математика и информатика и относится к дисциплинам по выбору. Осваивается на 1 курсе, 2 семестр.

Дисциплина по выбору Б3.ДВ.5 "Численные методы решения интегральных уравнений" относится к профессиональному циклу дисциплин, предназначена для студентов 4 курса (7 семестр). Базируется на знаниях, полученных в рамках дисциплин "Математический анализ", "Дифференциальные уравнения", "Уравнения математической физики", "Численные методы".

# 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

| Шифр компетенции                          | Расшифровка<br>приобретаемой компетенции                                                                                                                                                                           |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ПК-2<br>(профессиональные<br>компетенции) | способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии                                                                                 |
| ПК-5<br>(профессиональные<br>компетенции) | способность критически переосмысливать накопленный опыт, изменять при необходимости вид и характер своей профессиональной деятельности                                                                             |
| ПК-7<br>(профессиональные<br>компетенции) | способность собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным, профессиональным, социальным и этическим проблемам |
| ПК-8<br>(профессиональные<br>компетенции) | способность формировать суждения о значении и последствиях своей профессиональной деятельности с учетом социальных, профессиональных и этических позиций                                                           |

В результате освоения дисциплины студент:

#### 1. должен знать:

основные методы численного решения интегральных уравнений спектральных задач теории дифракции

#### 2. должен уметь:



понимать и применять на практике методы численного решения интегральных уравнений 3. должен владеть:

навыками практического решения спектральных задач теории диэлектрических волноводов

понимание основных положений спектральной теории диэлектрических волноводов и умение применять их на практике

#### 4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен во 2 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

## 4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

| N  | Раздел<br>Дисциплины/<br>Модуля                                                                           | Семестр | Неделя<br>семестра | Виды и часы<br>аудиторной работы,<br>их трудоемкость<br>(в часах) |                         |                        | Текущие формы<br>контроля         |
|----|-----------------------------------------------------------------------------------------------------------|---------|--------------------|-------------------------------------------------------------------|-------------------------|------------------------|-----------------------------------|
|    |                                                                                                           |         |                    | Лекции                                                            | Практические<br>занятия | Лабораторные<br>работы |                                   |
| 1. | Тема 1. Основные дифференциальные и интегральные уравнения спектральной теории диэлектрических волноводов | 2       | 1-2                | 0                                                                 | 0                       | 2                      | письменное<br>домашнее<br>задание |
|    | Тема 2. Электромагнитные потенциалы как основа построения интегральных уравнений теории потенциала        | 2       | 3-4                | 0                                                                 | 0                       | 2                      | письменное<br>домашнее<br>задание |

| N   | Раздел<br>Дисциплины/<br>Модуля                                                                                     | Семестр | Неделя<br>семестра | Виды и часы аудиторной работы, их трудоемкость (в часах) Практические Лабораторны |                         |                        | Текущие формы<br>контроля         |
|-----|---------------------------------------------------------------------------------------------------------------------|---------|--------------------|-----------------------------------------------------------------------------------|-------------------------|------------------------|-----------------------------------|
|     | шодуля                                                                                                              |         |                    | Лекции                                                                            | Практические<br>занятия | Лабораторные<br>работы |                                   |
| 3.  | Тема 3. Условия на границах раздела сред и граничные интегральные уравнения теории дифракции                        | 2       | 5-6                | 0                                                                                 | 0                       | 3                      | контрольная<br>работа             |
| 4.  | Тема 4. Поведение амплитуд собственных волн на бесконечности                                                        | 2       | 7                  | 0                                                                                 | 0                       | 1                      | письменное<br>домашнее<br>задание |
| 5.  | Тема 5. Интегральные уравнения скалярного приближения слабонаправляющего волновода                                  | 2       | 8-9                | 0                                                                                 | 0                       | 2                      | письменное<br>домашнее<br>задание |
| 6.  | Тема 6. Поиск собственных волн волновода кругового поперечного сечения                                              | 2       | 10                 | 0                                                                                 | 0                       | 1                      | письменное<br>домашнее<br>задание |
| 7.  | Тема 7. Знакомство с<br>основными<br>возможностями<br>системы Matlab                                                | 2       | 11                 | 0                                                                                 | 0                       | 1                      | письменное<br>домашнее<br>задание |
| 8.  | Тема 8.<br>Программирование в<br>системе Matlab                                                                     | 2       | 12                 | 0                                                                                 | 0                       | 1                      |                                   |
| 9.  | Тема 9. Вычисление корней полинома и нулей функции                                                                  | 2       | 13                 | 0                                                                                 | 0                       | 1                      | письменное<br>домашнее<br>задание |
| 10. | Тема 10. Работа с<br>матрицами                                                                                      | 2       | 14                 | 0                                                                                 | 0                       | 1                      | письменное<br>домашнее<br>задание |
| 11. | Тема 11. Методы конечномерной аппроксимации интегральных операторов и интегральных уравнений                        | 2       | 15-16              | 0                                                                                 | 0                       | 1                      | письменное<br>домашнее<br>задание |
| 12. | Тема 12. Численное решение интегральных уравнений и спектральных задач для интегральных операторов в системе Matlab | 2       | 17-18              | 0                                                                                 | 0                       | 2                      | контрольная<br>работа             |

| N | Раздел<br>Дисциплины/<br>Модуля   | Семестр | Неделя<br>семестра | а (в часах) |                         | Текущие формы<br>контроля   |         |
|---|-----------------------------------|---------|--------------------|-------------|-------------------------|-----------------------------|---------|
|   | модуля                            |         | •                  | Лекции      | Практические<br>занятия | ,<br>Лабораторные<br>работы | ·       |
|   | Тема . Итоговая<br>форма контроля | 2       |                    | 0           | 0                       | 0                           | экзамен |
|   | Итого                             |         |                    | 0           | 0                       | 18                          |         |

#### 4.2 Содержание дисциплины

# **Тема 1. Основные дифференциальные и интегральные уравнения спектральной теории** диэлектрических волноводов

## лабораторная работа (2 часа(ов)):

Уравнения Максвелла. Уравнение Гельмгольца. Граничные интегральные уравнения.

# **Тема 2. Электромагнитные потенциалы как основа построения интегральных уравнений теории потенциала**

#### лабораторная работа (2 часа(ов)):

Векторные электромагнитные потенциалы. Скалярные электромагнитные потенциалы. Интегральные уравнения теории потенциала.

# **Тема 3. Условия на границах раздела сред и граничные интегральные уравнения теории** дифракции

#### лабораторная работа (3 часа(ов)):

Условия сопряжения. Условия Дирихле. Условия Неймана. Условия третьего рода. Граничные интегральные уравнения теории дифракции.

# **Тема 4.** Поведение амплитуд собственных волн на бесконечности *пабораторная работа (1 часа(ов)):*

Условие Зоммерфельда. Условие экспоненциального убывания. Условие Рейхардта.

## **Тема 5. Интегральные уравнения скалярного приближения слабонаправляющего волновода**

#### лабораторная работа (2 часа(ов)):

Вывод скалярного приближения слабонаправляющего волновода. Границы его применимости. Сведение к интегральной постановке.

# **Тема 6.** Поиск собственных волн волновода кругового поперечного сечения *пабораторная работа (1 часа(ов)):*

Вывод и решение характеристического уравнения. Анализ спектральной задачи для интегрального уравнения. Сравнение двух подходов.

#### Tema 7. Знакомство с основными возможностями системы Matlab

#### лабораторная работа (1 часа(ов)):

Работа в режиме прямых вычислений. Работа в режиме диалога. Работа в пакетном режиме.

#### Tema 8. Программирование в системе Matlab

#### лабораторная работа (1 часа(ов)):

Работа с файлами. Основные приемы программирования. Отладка и трассировка.

#### Тема 9. Вычисление корней полинома и нулей функции

#### лабораторная работа (1 часа(ов)):

Вычисление корней полинома. Вычисление нулей функции. Регуляризация некорректных задач.

#### Тема 10. Работа с матрицами

#### лабораторная работа (1 часа(ов)):

Системы алгебраических уравнений. Матрицы. Определители.



## **Тема 11. Методы конечномерной аппроксимации интегральных операторов и интегральных уравнений**

#### лабораторная работа (1 часа(ов)):

Аппроксимация интегральных операторов. Аппроксимация интегральных уравнений. Аппроксимация интегро-дифференциальных уравнений.

## Тема 12. Численное решение интегральных уравнений и спектральных задач для интегральных операторов в системе Matlab лабораторная работа (2 часа(ов)):

Решение интегральных уравнений. Решение спектральных задач для интегральных операторов. Решение матричных спектральных задач.

#### 4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

| N  | Раздел<br>Дисциплины                                                                                      | Семестр | Неделя<br>семестра | Виды<br>самостоятельной<br>работы<br>студентов | Трудоемкость<br>(в часах) | Формы контроля<br>самостоятельной<br>работы |
|----|-----------------------------------------------------------------------------------------------------------|---------|--------------------|------------------------------------------------|---------------------------|---------------------------------------------|
| 1. | Тема 1. Основные дифференциальные и интегральные уравнения спектральной теории диэлектрических волноводов | 2       | 1-2                | подготовка<br>домашнего<br>задания             | 9                         | домашнее<br>задание                         |
| 2. | Тема 2. Электромагнитные потенциалы как основа построения интегральных уравнений теории потенциала        | 2       | 3-4                | подготовка<br>домашнего<br>задания             | 9                         | домашнее<br>задание                         |
| 3. | Тема 3. Условия на границах раздела сред и граничные интегральные уравнения теории дифракции              | 2       |                    | подготовка к<br>контрольной<br>работе          |                           | контрольная<br>работа                       |
| 4. | Тема 4. Поведение амплитуд собственных волн на бесконечности                                              | 2       | 7                  | подготовка<br>домашнего<br>задания             | 6                         | домашнее<br>задание                         |
| 5. | Тема 5. Интегральные уравнения скалярного приближения слабонаправляющего волновода                        | 2       | 8-9                | подготовка<br>домашнего<br>задания             | 9                         | домашнее<br>задание                         |
| 6. | Тема 6. Поиск собственных волн волновода кругового поперечного сечения                                    | 2       | 10                 | подготовка<br>домашнего<br>задания             | 6                         | домашнее<br>задание                         |
| 7. | Тема 7. Знакомство с<br>основными<br>возможностями<br>системы Matlab                                      | 2       | 11                 | подготовка<br>домашнего<br>задания             | 6                         | домашнее<br>задание                         |

| N   | Раздел<br>Дисциплины                                                                                                | Семестр | Неделя<br>семестра | Виды<br>самостоятельной<br>работы<br>студентов | Трудоемкость<br>(в часах) | Формы контроля<br>самостоятельной<br>работы |
|-----|---------------------------------------------------------------------------------------------------------------------|---------|--------------------|------------------------------------------------|---------------------------|---------------------------------------------|
| 8.  | Тема 8.<br>Программирование в<br>системе Matlab                                                                     | 2       | 12                 | подготовка к<br>контрольной<br>точке           | 6                         | контрольная<br>точка                        |
| 9.  | Тема 9. Вычисление корней полинома и нулей функции                                                                  | 2       | 13                 | подготовка<br>домашнего<br>задания             | ı n                       | домашнее<br>задание                         |
| 10. | Тема 10. Работа с<br>матрицами                                                                                      | 2       | 14                 | подготовка<br>домашнего<br>задания             | l h                       | домашнее<br>задание                         |
| 11. | Тема 11. Методы конечномерной аппроксимации интегральных операторов и интегральных уравнений                        | 2       | 15-16              | подготовка<br>домашнего<br>задания             | 1 9                       | домашнее<br>задание                         |
| 12. | Тема 12. Численное решение интегральных уравнений и спектральных задач для интегральных операторов в системе Matlab | 2       | 17-18              | подготовка к<br>контрольной<br>работе          |                           | контрольная<br>работа                       |
|     | Итого                                                                                                               |         |                    |                                                | 90                        |                                             |

#### 5. Образовательные технологии, включая интерактивные формы обучения

Активные и интерактивные формы проведения занятий в сочетании с внеаудиторной работой

# 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

## **Тема 1. Основные дифференциальные и интегральные уравнения спектральной теории диэлектрических волноводов**

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Граничные интегральные уравнения. Уравнения Максвелла. Уравнение Гельмгольца.

# **Тема 2. Электромагнитные потенциалы как основа построения интегральных уравнений теории потенциала**

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Интегральные уравнения теории потенциала. Векторные электромагнитные потенциалы. Скалярные электромагнитные потенциалы.

## **Тема 3. Условия на границах раздела сред и граничные интегральные уравнения теории дифракции**

контрольная работа, примерные вопросы:

Проверка знаний по темам: Условия Дирихле. Условия сопряжения. Условия Неймана. Условия третьего рода. Граничные интегральные уравнения теории дифракции.



#### Тема 4. Поведение амплитуд собственных волн на бесконечности

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Условие Зоммерфельда. Условие экспоненциального убывания. Условие Рейхардта.

## **Тема 5. Интегральные уравнения скалярного приближения слабонаправляющего волновода**

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Вывод скалярного приближения слабонаправляющего волновода. Границы его применимости. Сведение к интегральной постановке.

### Тема 6. Поиск собственных волн волновода кругового поперечного сечения

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Анализ спектральной задачи для интегрального уравнения. Вывод и решение характеристического уравнения. Сравнение двух подходов.

#### **Тема 7. Знакомство с основными возможностями системы Matlab**

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Работа в режиме прямых вычислений. Работа в режиме диалога. Работа в пакетном режиме.

#### Tema 8. Программирование в системе Matlab

контрольная точка, примерные вопросы:

Проверка знаний по темам: Работа с файлами. Основные приемы программирования. Отладка и трассировка.

#### Тема 9. Вычисление корней полинома и нулей функции

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Вычисление корней полинома. Вычисление нулей функции. Регуляризация некорректных задач.

## Тема 10. Работа с матрицами

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Матрицы. Определители. Системы алгебраических уравнений.

## **Тема 11. Методы конечномерной аппроксимации интегральных операторов и интегральных уравнений**

домашнее задание, примерные вопросы:

Изучение литературы и решение примеров по темам: Аппроксимация интегро-дифференциальных уравнений. Аппроксимация интегральных операторов. Аппроксимация интегральных уравнений.

## **Тема 12. Численное решение интегральных уравнений и спектральных задач для интегральных операторов в системе Matlab**

контрольная работа, примерные вопросы:

Проверка знаний по темам: Решение интегральных уравнений. Решение спектральных задач для интегральных операторов. Решение матричных спектральных задач.

#### Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

Вопросы к зачету:

- 1. Основные дифференциальные и интегральные уравнения спектральной теории диэлектрических волноводов
- 2. Электромагнитные потенциалы как основа построения интегральных уравнений теории потенциала



- 3. Условия на границах раздела сред и граничные интегральные уравнения теории дифракции
- 4. Поведение амплитуд собственных волн на бесконечности
- 5. Интегральные уравнения скалярного приближения слабонаправляющего волновода
- 6. Поиск собственных волн волновода кругового поперечного сечения
- 7. Знакомство с основными возможностями системы Matlab
- 8. Программирование в системе Matlab
- 9. Вычисление корней полинома и нулей функции
- 10. Работа с матрицами
- 11. Методы конечномерной аппроксимации интегральных операторов и интегральных уравнений
- 12. Численное решение интегральных уравнений и спектральных задач для интегральных операторов в системе Matlab

#### 7.1. Основная литература:

1. Калиткин Н. Н. Численные методы: учеб. пособие / Н. Н. Калиткин. ? 2-е изд., исправленное. ? СПб.: БХВ-Петербург, 2011. ? 586 с.

http://znanium.com/bookread.php?book=350803

2. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Бахвалов, Николай Сергеевич. Численные методы: учеб. пособие для студентов физ.-мат. спец. вузов[Электронный ресурс] / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков; Моск. гос. ун-т.?7-е изд..?Москва: БИНОМ. Лаб. знаний, 2012. - 635 с. Режим доступа: http://e.lanbook.com/view/book/4397/

#### 7.2. Дополнительная литература:

- 1. Треногин В.А. Функциональный анализ. М.: Наука, 1980. 495 с.
- 2. Пресдорф З. Некоторые классы сингулярных уравнений. М.: Мир, 1979. 498 с.
- 3. Гахов Ф.Д. Краевые задачи. М.: Наука, 1977. 640 с.
- 4. Плещинский Н.Б. Приложения теории интегральных уравнений с логарифмическими и степенными ядрами. Казань: Изд-во Казанск. ун-та, 1987. 160 с.
- 5. Насыров С.Р.. Метрические и линейные нормированные пространства: задачи к лабораторным занятиям по курсу "Функциональный анализ и интегральные уравнения" / С. Р. Насыров; Казан. гос. ун-т, Изд. 2-е, испр. и доп. Казань: [Казанский государственный университет], 2008.-35 с.

#### 7.3. Интернет-ресурсы:

Система MATLAB - http://www.math.msu.ru/department/uprug/courses.htm#tu Система MATLAB - http://www.math.msu.ru/department/uprug/courses.htm#tu Система MATLAB - http://www.math.msu.ru/department/uprug/courses.htm#tu Система MATLAB - http://www.math.msu.ru/department/uprug/courses.htm#tu Система MATLAB - http://www.math.msu.ru/department/uprug/courses.htm#tu

## 8. Материально-техническое обеспечение дисциплины(модуля)



Программа дисциплины "Спектральные задачи математической физики"; 01.04.02 Прикладная математика и информатика; профессор, д.н. (доцент) Карчевский Е.М.

Освоение дисциплины "Спектральные задачи математической физики" предполагает использование следующего материально-технического обеспечения:

#### компьютерный класс

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.04.02 "Прикладная математика и информатика" и магистерской программе Математическое моделирование .

Программа дисциплины "Спектральные задачи математической физики"; 01.04.02 Прикладная математика и информатика; профессор, д.н. (доцент) Карчевский Е.М.

| Авт | ор(ы):                     |         |    |      |
|-----|----------------------------|---------|----|------|
| Kap | очевский Е.                | М       |    | <br> |
| "   | " <del></del>              | _ 201 _ | г. |      |
|     | цензент(ы):<br>ктиева Л.У. |         |    |      |
| "   | "                          | _ 201 _ | г. |      |