## МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики



### **УТВЕРЖДАЮ**

## Программа дисциплины

Лаборатория автоматизации систем научных измерений БЗ.ДВ.3

| Направление подготовки: <u>011800.62 - Радиофизика</u><br>Профиль подготовки: <u>Специальные радиотехнические системы</u> |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Квалификация выпускника: <u>бакалавр</u>                                                                                  |  |  |  |  |
| Форма обучения: <u>очное</u>                                                                                              |  |  |  |  |
| Язык обучения: русский                                                                                                    |  |  |  |  |
| Автор(ы):                                                                                                                 |  |  |  |  |
| Акчурин А.Д.                                                                                                              |  |  |  |  |
| Рецензент(ы):                                                                                                             |  |  |  |  |
| -                                                                                                                         |  |  |  |  |
| СОГЛАСОВАНО:                                                                                                              |  |  |  |  |
| Заведующий(ая) кафедрой:<br>Протокол заседания кафедры No от " " 201 г                                                    |  |  |  |  |
| Учебно-методическая комиссия Института физики: Протокол заседания УМК No от "" 201г                                       |  |  |  |  |
|                                                                                                                           |  |  |  |  |
| Регистрационный No                                                                                                        |  |  |  |  |
| Казань                                                                                                                    |  |  |  |  |

2014

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННО АНАЛИТИЧЕСКАЯ СИСТЕМА КНО

#### Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) заведующий кафедрой, к.н. (доцент) Акчурин А.Д. Кафедра радиоастрономии Отделение радиофизики и информационных систем , Adel.Akchurin@kpfu.ru

#### 1. Цели освоения дисциплины

В курсе рассматриваются различные варианты применения средств вычислительной техники для автоматизации научного эксперимента. Рассматриваются различные варианты подключения внешних устройств к компьютеру в качестве системы сбора данных, а также в качестве устройства управления режимами сеанса измерений. Изучаются варианты аппаратного подключения к различным популярным шинам (LPT, COM, ISA, USB) и протокол обмена информацией по выбранной шине.

## 2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

## 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

В результате освоения дисциплины студент:

#### 1. должен знать:

принципы работы основных функциональных блоков систем сбора данных; принципы построения и функционирования этих блоков, собираемых на современных микросхемах различного уровня интеграции; принципы выбора методов подключения устройств к ЭВМ по заданным характеристикам;

#### 2. должен уметь:

ориентироваться в современных технологиях проектирования цифровых интерфейсов, в арсенале готовых аппаратных решений, выпускаемых современной промышленностью в виде отдельных микросхем. Ориентируясь в характеристиках аналого-цифровых и цифро-аналоговых схем, уметь выбрать соответствующий вариант подключения к заданной шине компьютера.

#### 3. должен владеть:

теоретическими знаниями о принципах работы систем сбора информации, используемых при измерении, контроле и управлении различными технологическими процессами;

#### 4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 8 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

#### 4.1 Структура и содержание аудиторной работы по дисциплине/ модулю



#### Тематический план дисциплины/модуля

| N  | Раздел<br>Дисциплины/<br>Модуля                                                                                                                                                                                                                                                                                                                                                                                    | Семестр | L.EMEL.IDA | Виды и часы<br>аудиторной работы,<br>их трудоемкость<br>(в часах) |                         |                        | Текущие формы<br>контроля |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-------------------------------------------------------------------|-------------------------|------------------------|---------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                    |         |            | Лекции                                                            | Практические<br>занятия | лабораторные<br>работы | копіродя                  |
| 1. | Тема 1. Введение. Цели и назначение курса. Последовательный порт СОМ. Назначение сигналов СОМ порта по стандарту RS-232C. Уровни сигналов RS-232C на передающем и принимающем концах линии связи. Два метода управления обменом данных: аппаратный и программный. Два режима передачи: синхронный и асинхронный и асинхронный. Особенности протокола обмена: скорость, четность, наличие старт-,.стоп-битов и т.д. | 8       | 1-4        | 0                                                                 | 0                       | 0                      |                           |
| 2. | Тема 2. Параллельный порт Centronics и стандарт IEEE 1284. Симплексный (однонаправленный) режим передачи данных. Назначение сигналов стандартного LPT порта в разъеме и уровни сигналов. Режимы: SPP, Nibble Mode, EPP, ECP. Диаграмма работы. Дуплексные расширения интерфейса (EPP, ECP).                                                                                                                        | 8       | 5-8        | 0                                                                 | 0                       | 0                      |                           |

| N  | Раздел<br>Дисциплины/<br>Модуля                                                                                                                                                                                                                                                                                                                                                                                                                              | Семестр | CEMECIDA | Лекшии | Виды и ча<br>аудиторной р<br>их трудоемк<br>(в часах<br>Практические | аботы,<br>сость<br>)<br>Лабораторные | Текущие формы<br>контроля |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------|----------------------------------------------------------------------|--------------------------------------|---------------------------|
| 3. | Тема 3. Системная магистраль ISA. Назначение сигналов шины ISA.Режимы работы на шине. Временные диаграммы циклов обмена данными с устройствами ввода/вывода. Функциональная и аппаратная реализация самостоятельно реализуемого порта на шине ISA: селектор адреса, регистры данных с коммутатором, генератор импульсов, синхронизирующих обмен данными.                                                                                                     | 8       | 9-12     | 0      | О                                                                    | работы                               |                           |
| 4. | Тема 4. Шина USB - как реальная возможность пользователей работать в режиме Plug&Play с периферийными устройствами. Архитектура шины USB: (dедущее устройство или хост, два вида подчинённых устройств - хаб-разветвитель и целевое устройство). Структура информационного потока. USB 1.1, USB 2.0, USB 3.0 Аппаратные мосты USB и драйверы к ним как простое средство подключения к шине, не требующих от разработчика специальных знаний о стандарте USB. | 8       | 13-16    | 0      | 0                                                                    | 0                                    | 201107                    |
|    | Тема . Итоговая форма контроля                                                                                                                                                                                                                                                                                                                                                                                                                               | 8       |          | 0      | 0                                                                    | 0                                    | зачет                     |

| N | Раздел<br>Дисциплины/<br>Модуля | Семестр | Неделя<br>семестра | Виды и часы<br>аудиторной работы,<br>их трудоемкость<br>(в часах) |                         |                        | Текущие формы<br>контроля |
|---|---------------------------------|---------|--------------------|-------------------------------------------------------------------|-------------------------|------------------------|---------------------------|
|   |                                 |         |                    | Лекции                                                            | Практические<br>занятия | Лабораторные<br>работы | •                         |
|   | Итого                           |         |                    | 0                                                                 | 0                       | 0                      |                           |

## 4.2 Содержание дисциплины

Тема 1. Введение. Цели и назначение курса. Последовательный порт СОМ. Назначение сигналов СОМ порта по стандарту RS-232C. Уровни сигналов RS-232C на передающем и принимающем концах линии связи. Два метода управления обменом данных: аппаратный и программный. Два режима передачи: синхронный и асинхронный. Особенности протокола обмена: скорость, четность, наличие старт-,.стоп-битов и т.д.

Тема 2. Параллельный порт Centronics и стандарт IEEE 1284. Симплексный (однонаправленный) режим передачи данных. Назначение сигналов стандартного LPT порта в разъеме и уровни сигналов. Режимы: SPP, Nibble Mode, EPP, ECP. Диаграмма работы. Дуплексные расширения интерфейса (EPP, ECP).

Тема 3. Системная магистраль ISA. Назначение сигналов шины ISA. Режимы работы на шине. Временные диаграммы циклов обмена данными с устройствами ввода/вывода. Функциональная и аппаратная реализация самостоятельно реализуемого порта на шине ISA: селектор адреса, регистры данных с коммутатором, генератор импульсов, синхронизирующих обмен данными.

Тема 4. Шина USB - как реальная возможность пользователей работать в режиме Plug&Play с периферийными устройствами. Архитектура шины USB: (dедущее устройство или хост, два вида подчинённых устройств - хаб-разветвитель и целевое устройство). Структура информационного потока. USB 1.1, USB 2.0, USB 3.0 Аппаратные мосты USB и драйверы к ним как простое средство подключения к шине, не требующих от разработчика специальных знаний о стандарте USB.

- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- Тема 1. Введение. Цели и назначение курса. Последовательный порт СОМ. Назначение сигналов СОМ порта по стандарту RS-232C. Уровни сигналов RS-232C на передающем и принимающем концах линии связи. Два метода управления обменом данных: аппаратный и программный. Два режима передачи: синхронный и асинхронный. Особенности протокола обмена: скорость, четность, наличие старт-,.стоп-битов и т.д.
- Тема 2. Параллельный порт Centronics и стандарт IEEE 1284. Симплексный (однонаправленный) режим передачи данных. Назначение сигналов стандартного LPT порта в разъеме и уровни сигналов. Режимы: SPP, Nibble Mode, EPP, ECP. Диаграмма работы. Дуплексные расширения интерфейса (EPP, ECP).
- Тема 3. Системная магистраль ISA. Назначение сигналов шины ISA. Режимы работы на шине. Временные диаграммы циклов обмена данными с устройствами ввода/вывода. Функциональная и аппаратная реализация самостоятельно реализуемого порта на шине ISA: селектор адреса, регистры данных с коммутатором, генератор импульсов, синхронизирующих обмен данными.

Тема 4. Шина USB - как реальная возможность пользователей работать в режиме Plug&Play с периферийными устройствами. Архитектура шины USB: (dедущее устройство или хост, два вида подчинённых устройств - хаб-разветвитель и целевое устройство). Структура информационного потока. USB 1.1, USB 2.0, USB 3.0 Аппаратные мосты USB и драйверы к ним как простое средство подключения к шине, не требующих от разработчика специальных знаний о стандарте USB.

#### Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Форма контроля - зачет

#### 7.1. Основная литература:

- 1. В.Л.Шило. Популярные цифровые микросхемы. М.:Радио и связь, 1987. 352 с.
- 2. С.М.Блохнин Шина ISA персонального компьютера IBM PC/AT. -М.:Сплайн, 1992.-234 с.
- 3. С.И. Баскаков Радиотехнические цепи и сигналы. -М.:Высшая школа, 1983. -540 с
- 4. А. В.Фролов, Г.В. Фролов. Аппаратное обеспечение ІВМ РС. М.: "Диалог МИФИ", 1992.
- 5. М.В.Гук. Аппаратные средства ІВМ РС. СПб: Питер, 2001.
- 6. В. А. Авдеев. Периферийные устройства: интерфейсы, схемотехника, программирование. М.: ДМК-Пресс, 2010, 848 с.

### 7.2. Дополнительная литература:

- 1. А.Г.Алексенко, И.И.Шагурин. Микросхемотехника: учеб. пособие для вузов / под. ред. Степаненко. М.:Радио и связь, 1982. 416 с.
- 2. Цифровые и аналоговые интегральные микросхемы: Справочник /под ред. С.В.Якубовского. М.:Радио и связь, 1989. 496 с.
- 3. А.А.Мячев. Интерфейсы средств вычислительной техники. М.: Радио и связь, 1993.

#### 7.3. Интернет-ресурсы:

# 8. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011800.62 "Радиофизика" и профилю подготовки Специальные радиотехнические системы .



| Автор(ы):     |         |
|---------------|---------|
| Акчурин А.Д   |         |
| "             | _201 г. |
| Рецензент(ы): |         |
| " "           | _201 г. |