МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

Основы алгебры и геометрии Б1.Б.30

Направление подготовки: 10.03.01 - Информационная безопасность
Профиль подготовки: Безопасность компьютерных систем
Квалификация выпускника: бакалавр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):

Столов Е.Л. Рецензент(ы): Латыпов Р.Х.

СОГЛАСОВАНО:			
Заведующий(ая) кафедрой: Латыпов Р. Протокол заседания кафедры No от		201г	
Учебно-методическая комиссия Институ технологий:	та вычисли	ительной математики и информаци	ОННЫХ
Протокол заседания УМК No от "	"	201г	
Регистрационный No 946218			
	Казань		
	2018		

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Столов Е.Л. кафедра системного анализа и информационных технологий отделение фундаментальной информатики и информационных технологий, Yevgeni.Stolov@kpfu.ru

1. Цели освоения дисциплины

Цель курса - ознакомить студентов с базовыми методами линейной алгебры и их приложениям к задачам аналитической геометрии. В центре изложения находится теория линейных систем произвольного вида. Производится классификация конечномерных операторов над различными полями. С единой точки зрения на основе аппарата теории матриц рассматриваются задачи классификации кривых и поверхностей второго порядка. Излагаются основные факты, относящиеся к теории многочленов.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.Б.30 Дисциплины (модули)" основной образовательной программы 10.03.01 Информационная безопасность и относится к базовой (общепрофессиональной) части. Осваивается на 1 курсе, 1 семестр.

Данная дисциплина относится к общепрофессиональным дисциплинам.

Читается на 1 курсе в 1 семестре для студентов обучающихся по направлению "Информационная безопасность".

Результаты подготовки по дисциплине "Алгебра и геометрия" используются при изучении курсов "Математический анализ 1", "Дискретная математика", "Математический анализ 2", "Дифференциальные и разностные уравнения"

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
TO TO COMPACE MANAGEMENT	способностью применять соответствующий математический аппарат для решения профессиональных задач

В результате освоения дисциплины студент:

- 1. должен знать:
- каким образом аппарат теории матриц применяется для решения математических задач
- 2. должен уметь:
- ориентироваться в множестве проблем, решаемых методами линейной алгебры и аналитической геометрии
- 3. должен владеть:
- теоретическими знаниями о методах решения произвольных систем линейных уравнений и классификации кривых второго порядка
- 4. должен демонстрировать способность и готовность:
- Применять методы решения линейных систем произвольного вида для исследования простейших моделей. Использовать методы аналитической

геометрии для решения просейших задач на плоскости и в пространстве. Показать навыки работы с пакетами программ типа SciLab

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Дисциплины/ Семестр		Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля	
	модуля		l	Лекции	Практические занятия	Лабораторные работы	-	
1.	Тема 1. Комплексные числа. Определение и операции над комплексными числами. Алгебраическая и тригонометрическая формы. Извлечение корней произвольной степени	1		2	0	2	Письменное домашнее задание	
2.	Тема 2. Матрицы. Определение и операции над матрицами. Свойства операций сложения и умножения. Умножение матрицы на число	1		2	0	3	Письменное домашнее задание	
3.	Тема 3. Перестановки. Определитель квадратной матрицы Основные свойства определителя в терминах строк матрицы	1		2	0	4	Письменное домашнее задание	

N	Раздел Дисциплины/ Модуля	Семестр	Виды и часы аудиторной работы, их трудоемкость семестра (в часах)				Текущие формы контроля
				Лекции	практические занятия	лаоораторные работы	
4.	Тема 4. Формула разложения определителя по строке. Примеры вычисления ?фигурных? определитель Вандермонда.	1		2	0	2	Письменное домашнее задание
5.	Тема 5. Обратная матрица. Линейные системы уравнений с невырожденной матрицей. Существование и единственность решения. Формулы Крамера.	1		3	0	3	Письменное домашнее задание
6.	Тема 6. Понятие группы и поля. Примеры групп и полей. Характеристика поля.	1		3	0	2	Контрольная работа
7.	Тема 7. Линейное пространство над полем. Примеры линейных пространств: пространств: пространствых отрезков, пространство строк заданной длины.	1		3	0	2	Письменное домашнее задание
8.	Тема 8. Линейная зависимость векторов. Ранг системы векторов. Основная теорема о ранге системы векторов. Размерность линейного пространства. База и разложение вектора по базе. Базы в пространстве направленных отрезков и в пространстве строк	1		3	0	2	Письменное домашнее задание

N	Раздел Дисциплины/	ісциплины/ Семестр			Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	Модуля			Лекции	Практические занятия	лабораторные работы	
9.	Тема 9. Ранг матрицы. Основная теорема о ранге матрицы. Необходимое и достаточное условие равенства нулю определителя матрицы. Вычисление ранга матрицы. Ранг произведения матриц.	1		2	0	2	Письменное домашнее задание
10.	Тема 10. Однородные системы уравнений. Фундаментальное множество решений	1		2	0	2	Письменное домашнее задание
11.	Тема 11. Неоднородные системы уравнений. Совместность. Общее решение неоднородной системы.	1		2	0	4	Письменное домашнее задание
12.	Тема 12. Скалярное произведение векторов и его свойства Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства	1		2	0	3	Письменное домашнее задание
13.	Тема 13. Аффинные пространства. Системы координат. Уравнения прямой на плоскости. Задачи на проведение прямой. Расстояние от точки до прямой на плоскости.	1		2	0	3	Письменное домашнее задание

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	, Лабораторные работы	•
	Тема 14. Уравнения плоскости в пространстве. Задачи на проведение плоскости. Расстояние от точки до плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой в пространстве.	1		2	0	2	Контрольная работа
	Тема . Итоговая форма контроля	1		0	0	0	Экзамен
	Итого			32	0	36	

4.2 Содержание дисциплины

Тема 1. Комплексные числа. Определение и операции над комплексными числами. Алгебраическая и тригонометрическая формы. Извлечение корней произвольной степени

лекционное занятие (2 часа(ов)):

Комплексные числа. Определение и операции над комплексными числами. Алгебраическая и тригонометрическая формы. Деление комплексных чисел. Умножение и деление комплексных чисел в тригонометрической форме. Извлечение корней произвольной степени. Рассмотрение частных случаем корней малой степени и их применение

лабораторная работа (2 часа(ов)):

Извлечение корней произвольной степени из комплексного числа общего вида. Геометрический смысл операций над комплексными числами

Тема 2. Матрицы. Определение и операции над матрицами. Свойства операций сложения и умножения. Умножение матрицы на число

лекционное занятие (2 часа(ов)):

Матрицы. Определение и операции над матрицами. Свойства операций сложения и умножения. Умножение матрицы на число. Операция транспонирования матрицы. Пронос операции транспонирования через произведение и сумму матриц

лабораторная работа (3 часа(ов)):

Пронесение операции транспонирования через операции сложения и умножения матриц

Тема 3. Перестановки. Определитель квадратной матрицы.. Основные свойства определителя в терминах строк матрицы

лекционное занятие (2 часа(ов)):

Перестановки. Операции над подставновками. Способ вычисления четности подстановки. Определитель квадратной матрицы.. Основные свойства определителя в терминах строк матрицы. Примеры определителей второго и третьего порядка. Демонстрация свойств определителя на матрицах малого порядка

лабораторная работа (4 часа(ов)):

Фигурные перестановки. Вычисление четности фигурных перестановок.

Тема 4. Формула разложения определителя по строке. Примеры вычисления ?фигурных? определителей. Определитель Вандермонда.

лекционное занятие (2 часа(ов)):

Формула разложения определителя по строке. Демонстрация формул на определителях малого порядка. Понижение порядка матрицы при вычислении определителя. Примеры вычисления "фигурных"определителей. Определитель Вандермонда. Определители сводимые к треугольной форме

лабораторная работа (2 часа(ов)):

Определители матриц, сводимых к определителю Вандермонда

Тема 5. Обратная матрица. Линейные системы уравнений с невырожденной матрицей. Существование и единственность решения. Формулы Крамера.

лекционное занятие (3 часа(ов)):

Обратная матрица. Пример вычисления обратной матрицы малого порядка с помощью алгебраических дополнений. Линейные системы уравнений с невырожденной матрицей. Существование и единственность решения. Формулы Крамера. Второй способ вычисления обратной матрицы. Метод Гаусса для решения систем, к которым применимо правило Крамера. Однородные системы уравнений с невырожденной матрицей.

лабораторная работа (3 часа(ов)):

Решение уравнений по правилу Крамера. Два способа вычисления обратной матрицы

Тема 6. Понятие группы и поля. Примеры групп и полей. Характеристика поля. *пекционное занятие (3 часа(ов)):*

Понятие группы и поля. Примеры групп и полей. Характеристика поля. Понятие группы и поля. Примеры групп: группы подстановок, группы невырожденных матриц, группы симметрии плоских и пространственных фигур. Примеры полей: поле вычетов по простому модулю. Нахождение обратного элемента в поле вычетов. Характеристика поля.

лабораторная работа (2 часа(ов)):

Группы симметрии тетраэдра и куба. Поля вычетов по простому модулю.

Тема 7. Линейное пространство над полем. Примеры линейных пространств: пространство направленных отрезков, пространство строк заданной длины.

лекционное занятие (3 часа(ов)):

Линейное пространство над полем.Понятие внутренней и внешней операции в алгебраической структуре. Система аксиом линейного пространства. Примеры линейных пространств: пространство направленных отрезков, пространство строк заданной длины, пространство матриц заданного размера

лабораторная работа (2 часа(ов)):

Пространство направленных отрезков на плоскости. Линейное пространство прямоугольных матриц.

Тема 8. Линейная зависимость векторов. Ранг системы векторов. Основная теорема о ранге системы векторов. Размерность линейного пространства. База и разложение вектора по базе. Базы в пространстве направленных отрезков и в пространстве строк лекционное занятие (3 часа(ов)):

Линейная зависимость векторов. Определение максимальной линейно независимой системы. Основная теорема о ранге системы векторов. Ранг системы векторов как число векторов в МЛНП. Размерность линейного пространства. База и разложение вектора по базе. Единственность координат вектора в заданной базе. Базы в пространстве направленных отрезков и в пространстве строк. Вычисление размерности конкретных пространств.

лабораторная работа (2 часа(ов)):

Геометрический смысл линейной зависимости в пространстве отрезков. Перечисление линейных подпространств в линейном пространстве строк заданной длины

Тема 9. Ранг матрицы. Основная теорема о ранге матрицы. Необходимое и достаточное условие равенства нулю определителя матрицы. Вычисление ранга матрицы. Ранг произведения матриц.

лекционное занятие (2 часа(ов)):

Ранг матрицы как ранг системы векторов, составленный из строк матрицы. Основная теорема о ранге матрицы. Совпадение рангов матрицы, вычисленных по строкам и по столбцам. Необходимое и достаточное условие равенства нулю определителя матрицы. Вычисление ранга матрицы с помощью эквивалентных преобразований. Метод окаймления для вычисления рана матрицы. Ранг произведения матриц. Частный случай, когда одна из матриц невырождена.

лабораторная работа (2 часа(ов)):

Способы вычисления ранга: метод окаймлений и метод элементарных преобразований.

Тема 10. Однородные системы уравнений. Фундаментальное множество решений лекционное занятие (2 часа(ов)):

Однородные системы уравнений. Решения однородной системы как подпространство в пространстве строк заданной длины. Фундаментальное множество решений как базис в пространстве решений. Связь размерности пространства решений с рангом матрицы и числом неизвестных. Понятие о числе степеней свободы системы.

лабораторная работа (2 часа(ов)):

Способы построения фундаментального множества решений однородной системы. представление общего решения через фундаментальные решения

Тема 11. Неоднородные системы уравнений. Совместность. Общее решение неоднородной системы.

лекционное занятие (2 часа(ов)):

Неоднородные системы уравнений. Пример отсутствия решений у неоднородной системы. Совместность. теорема Кронекера-Капелли. Общее решение неоднородной системы. Геометрическая интерпретация формы общего решения неоднородной системы.

лабораторная работа (4 часа(ов)):

Проверка совместности неоднородной системы. Сведение получения общего решения неоднородной системы к решению однородной системы

Тема 12. Скалярное произведение векторов и его свойства Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства *лекционное занятие (2 часа(ов)):*

Скалярное произведение векторов и его свойства. Геометрическая интерпретация скалярного произведения. Векторное произведение векторов и его свойства. Геометрическая интерпретация. Смешанное произведение векторов и его свойства. Геометрическая интерпретация. Скалярное, векторное и смешанное произведения в координатах, вычисленных в ортонормированном базисе. Нахождение длины вектора, угла между векторами, площадей и объемов с помощью рассмотренных операций.

лабораторная работа (3 часа(ов)):

Вычисления с помощью скалярного и векторного произведений: нахождение угла между векторами, определение площади треугольника.

Тема 13. Аффинные пространства. Системы координат. Уравнения прямой на плоскости. Задачи на проведение прямой. Расстояние от точки до прямой на плоскости.

лекционное занятие (2 часа(ов)):

Аффинные пространства как множество, состоящее из точек и векторов. Системы координат аффинного пространства, состоящая из начала координат и базиса линейного пространства. Определение координат точки в заданной системе координат. Уравнения прямой на плоскости. Параметрическое уравнение прямой. Различные формы уравнений прямой, вытекающие из параметрического уравнения. Задачи на проведение прямой: уравнение прямой, проходящей через две точки. Расстояние от точки до прямой на плоскости.

лабораторная работа (3 часа(ов)):

Различные уравнения прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой

Тема 14. Уравнения плоскости в пространстве. Задачи на проведение плоскости. Расстояние от точки до плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой в пространстве.

лекционное занятие (2 часа(ов)):

Уравнения плоскости в пространстве. Уравнение плоскости в параметрической форме, в общей форме. Задачи на проведение плоскости: плоскость через три точки, плоскость через точку параллельно заданной плоскости. Расстояние от точки до плоскости. Уравнение прямой в пространстве. Прямая как пересечение двух плоскостей. Расстояние от точки до прямой в пространстве. Условие пересечения двух прямых в пространстве.

лабораторная работа (2 часа(ов)):

Уравнение плоскости в канонической и в параметрической форме. Пересечение прямой и плоскости. Пересечение двух прямых в пространстве

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Комплексные числа. Определение и операции над комплексными числами. Алгебраическая и тригонометрическая формы. Извлечение корней произвольной степени	1		подготовка домашнего задания	2	домашнее задание
2.	Тема 2. Матрицы. Определение и операции над матрицами. Свойства операций сложения и умножения. Умножение матрицы на число	1		подготовка домашнего задания	2	домашнее задание
3.	Тема 3. Перестановки. Определитель квадратной матрицы Основные свойства определителя в терминах строк матрицы	1		подготовка домашнего задания	2	домашнее задание
4.	Тема 4. Формула разложения определителя по строке. Примеры вычисления ?фигурных? определитель Вандермонда.	1		подготовка домашнего задания	4	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
5.	Тема 5. Обратная матрица. Линейные системы уравнений с невырожденной матрицей. Существование и единственность решения. Формулы Крамера.	1		подготовка домашнего задания	2	домашнее задание
6.	Тема 6. Понятие группы и поля. Примеры групп и полей. Характеристика поля.	1		подготовка к контрольной работе	2	контрольная работа
	Тема 7. Линейное пространство над полем. Примеры линейных пространств: пространств: пространство направленных отрезков, пространство строк заданной длины.	1		подготовка домашнего задания	2	домашнее задание
8.	Тема 8. Линейная зависимость векторов. Ранг системы векторов. Основная теорема о ранге системы векторов. Размерность линейного пространства. База и разложение вектора по базе. Базы в пространстве направленных отрезков и в пространстве строк	1		подготовка домашнего задания	2	домашнее задание
9.	Тема 9. Ранг матрицы. Основная теорема о ранге матрицы. Необходимое и достаточное условие равенства нулю определителя матрицы. Ранг произведения матриц.	1		подготовка домашнего задания	3	домашнее задание
10.	Тема 10. Однородные системы уравнений. Фундаментальное множество решений	1		подготовка домашнего задания	2	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
11.	Тема 11. Неоднородные системы уравнений. Совместность. Общее решение неоднородной системы.	1		подготовка домашнего задания	/	домашнее задание
12.	Тема 12. Скалярное произведение векторов и его свойства Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства Смешанное свойства	1		подготовка домашнего задания		домашнее задание
13.	Тема 13. Аффинные пространства. Системы координат. Уравнения прямой на плоскости. Задачи на проведение прямой. Расстояние от точки до прямой на плоскости.	1		подготовка домашнего задания	2	домашнее задание
14.	Тема 14. Уравнения плоскости в пространстве. Задачи на проведение плоскости. Расстояние от точки до плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой в пространстве.	1		подготовка к контрольной работе		контрольная работа
	Итого				31	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных и лабораторных занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. На сайте курса имеется краткий конспект каждой из лекций. (http://www.ksu.ru/f9/index.php?id=20&idm=0&num=8) Конспект не может заменить учебник. Его цель - формулировка основных утверждений и определений. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебнике.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для решения типовых задач. Указанные задачи могут решаться как вручную, так и с помощью различных пакетов. Поэтому лабораторные занятия проходят в компьютерном классе с использованием пакета SciLab.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Комплексные числа. Определение и операции над комплексными числами. Алгебраическая и тригонометрическая формы. Извлечение корней произвольной степени

домашнее задание, примерные вопросы:

Решение задач по теме "Комплексные числа". Операции над комплексными числами. Правила преобразований в алгебраическую и тригонометрическую формы

Тема 2. Матрицы. Определение и операции над матрицами. Свойства операций сложения и умножения. Умножение матрицы на число

домашнее задание, примерные вопросы:

Решение задач по теме "Матрицы". Операции над матрицами

Тема 3. Перестановки. Определитель квадратной матрицы.. Основные свойства определителя в терминах строк матрицы

домашнее задание, примерные вопросы:

Решение задач по теме "Перестановки". Исследование на примерах свойств определителя квадратной матрицы.

Тема 4. Формула разложения определителя по строке. Примеры вычисления ?фигурных? определителей. Определитель Вандермонда.

домашнее задание, примерные вопросы:

Решение задач по теме "Вычисление определителя". Вычисление определителя путем разложения по строке.

Тема 5. Обратная матрица. Линейные системы уравнений с невырожденной матрицей. Существование и единственность решения. Формулы Крамера.

домашнее задание, примерные вопросы:

Решение задач по теме "Обратная матрица". Решение систем линейных уравнений с помощью формул Крамера.

Тема 6. Понятие группы и поля. Примеры групп и полей. Характеристика поля.

контрольная работа, примерные вопросы:

Контрольная работа по темам: Матрицы и определители

Тема 7. Линейное пространство над полем. Примеры линейных пространств: пространство направленных отрезков, пространство строк заданной длины.

домашнее задание, примерные вопросы:

Решение задач по теме "Линейная зависимость векторов". Разложение векторов по базису. Нахождение ранга системы векторов.

Тема 8. Линейная зависимость векторов. Ранг системы векторов. Основная теорема о ранге системы векторов. Размерность линейного пространства. База и разложение вектора по базе. Базы в пространстве направленных отрезков и в пространстве строк

домашнее задание, примерные вопросы:

Задачи на отыскание базисных векторов в пространстве

Тема 9. Ранг матрицы. Основная теорема о ранге матрицы. Необходимое и достаточное условие равенства нулю определителя матрицы. Вычисление ранга матрицы. Ранг произведения матриц.

домашнее задание, примерные вопросы:

Задачи на вычисление ранга матрицы

Тема 10. Однородные системы уравнений. Фундаментальное множество решений

домашнее задание, примерные вопросы:

Решение системы. Нахождение фундаментальной системы решений

Тема 11. Неоднородные системы уравнений. Совместность. Общее решение неоднородной системы.

домашнее задание, примерные вопросы:

Задачи. Приведенная система уравнений и частное решение неоднородной системы.

Тема 12. Скалярное произведение векторов и его свойства Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства

домашнее задание, примерные вопросы:

Задачи на вычисление длины вектора и нахождение площади треугольника

Тема 13. Аффинные пространства. Системы координат. Уравнения прямой на плоскости. Задачи на проведение прямой. Расстояние от точки до прямой на плоскости.

домашнее задание, примерные вопросы:

Задачи на нахождение расстояния от точки до прямой. Уравнение прямой в общей форме.

Тема 14. Уравнения плоскости в пространстве. Задачи на проведение плоскости. Расстояние от точки до плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой в пространстве.

контрольная работа, примерные вопросы:

Контрольная работа на проведение прямой и плоскости и нахождение решения неоднородной системы

Итоговая форма контроля

экзамен

Примерные вопросы к экзамену:

По данной дисциплине предусмотрено проведение зачета и экзамена.

Пример контрольной работы 1

- 1. Найти элемент в обратной матрице четвертого порядка, стоящий в третьей строке и четвертом столбце..
- 2. Дана система уравнений с предыдущей матрицей и правой частью. Найти решение системы методом Гаусса
- 3. Возможно равенство Re(1+i)^n=0 для целых значений n.

Пример котрольной работы 2

1. Дана прямая

\$\$

 $\frac{x+3}{-2}=\frac{y-3}{1}=\frac{z}{2}$

22

Через точку пересечения прямых провести прямую, параллельную этой прямой

\begin{enumerate}

\item \$\$

 $\frac{x-9}{-3}=\frac{y+11}{5}=\frac{z-6}{1}$

2. Даны два вектора

 $\alpha = (1,2,1) \quad (3,2,0)$

Найти вектор \$\gamma,|\gamma|=1\$ такой, что объем параллелепипеда, построенного на трех векторах, будет максимальным

3. Даны три ненулевых вектора \$\alpha,\beta,\gamma.\$ Перечислить все условия, при которых выполнено равенство \$[\alpha,[\beta,\gamma]]+[\beta,[\gamma,\alpha]]=\Theta\$.

В экзаменационный билет входят теоретический вопрос и задача

Примерные вопросы для экзамена, включенные в билет

Примерные вопросы для экзамена

- 1. Комплексные числа. Все операции с частичными доказательствами. Вычисление обратного элемента. Операция сопряжения и ее свойства.
- 2. Тригонометрическая форма. Геометрическая интерпретация сложения и умножения. Корни степени n из 1. Вычисление корня степени n из произвольного числа.
- Сложение и умножение ассоциативность, существование единицы. Перестановки.
 Определение четности

перестановки.

- 4. Изменение четности перестановки при транспозиции. Определение определителя. Транспонирование матрицы.
- 5. Формула разложения по строке. Обратная матрица
- 6. Правило Крамера. Метод Гаусса
- 7. Пример пространства направленных отрезков. Линейная зависимость .
- 8. Основная теорема о линейной зависимости.
- 9. Основная теорема о ранге матрицы. Необходимое и достаточное условие
- 10. Построение общего решения однородной системы.
- 11. Скалярное произведение векторов. Применение скалярного произведения для вычисления угла и площади
- 12. Векторное произведение векторов. Запись в координатах.
- 13. Смешанное произведение. Геометрический смысл.
- 14. Система координат на плоскости. Уравнения прямой: параметрическое, каноническое, в общей форме, в отрезках, нормальное уравнение.
- 15. Уравнение прямой в пространстве. Условие пересечения двух прммых.
- 16.. Угол между прямыми и плоскостями. Пересечение прямой и плоскости.

Пересечение прямых в пространстве. Расстояние от точки до прямой в пространстве.

- 17. Различные методы вычисления расстояния от точки до прямой
- 18. Циклические группы, порядок элемента. Поле. Примеры полей, включая расширения поля рациональных чисел.

7.1. Основная литература:

- 1. Карчевский Е..М. Линейная алгебра и аналитическая геометрия: учебное пособие / Е. М. Карчевский, М. М. Карчевский.?Казань: Казанский университет, 2011.?269 с.
- 2. Ильин В.А., Позняк Э.Г. Линейная алгебра. М.: Физматлит, 2010. 278 с.
- 3.Ильин В.А., Позняк Э.Г. Линейная алгебра. 6-е изд., стер. М.: Физматлит, 2008. 280 с. http://e.lanbook.com/books/element.php?pl1 id=2178
- 4.Рудык Б.М. Линейная алгебра: Учебное пособие / Б.М. Рудык. М.: НИЦ ИНФРА-М, 2014. 318 с.- ISBN-online: 978-5-16-101538-4.

http://znanium.com/bookread.php?book=460611

5. Шершнев В.Г. Основы линейной алгебры и аналитической геометрии: Учебное пособие / В.Г.

Шершнев. - М.: НИЦ ИНФРА-М, 2014. - 168 с.- ISBN-online: 978-5-16-101126-3.

http://znanium.com/bookread.php?book=455245

6. Карчевский Е.М., Карчевский М.М. Лекции по геометрии и алгебре. Учебное пособие -

Казанский федеральный университет, 2011. - Режим доступа: -

http://www.ksu.ru/f9/bin_files/G_and_A_lectures.pdf, свободный. - 222 с.

7.2. Дополнительная литература:

- 1. Курош А.Г. Курс высшей алгебры. Изд-во "Лань", 2004. 432 с.
- 2. Ильин В.А. Аналитическая геометрия: Учеб. для студентов физ. спец. и спец. "Прикладная математика"/ В.А.Ильин. 6-е изд., стер..- Москва: ФИЗМАТЛИТ, 2002. 224 с.
- 3. Бурмистров Б.Н. Элементы линейной алгебры и аналитическая геометрия на плоскости и в пространстве: учебное пособие / Б. Н. Бурмистров, Л. Р. Секаева; Казан. гос. ун-т. Казань: [Изд-во Казан. гос. ун-та], 2009, 81 с.
- 4. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры: учеб. пособие для студ.вузов / Д. В. Беклемишев.?10-е изд., испр..?М.: Физматлит, 2003.?304 с.
- 5. Шевцов Г.С. Линейная алгебра: теория и прикладные аспекты: Учебное пособие / Г.С. Шевцов. 3-е изд., испр. и доп. М.: Магистр: НИЦ ИНФРА-М, 2014. 544 c.-ISBN-online: 978-5-16-100523-1.

http://znanium.com/go.php?id=438021

7.3. Интернет-ресурсы:

Интернет-портал образовательных ресурсов КФУ - http://www.kfu-elearning.ru/ Материалы по алгебре - http://www.ksu.ru/f9/index.php?id=20&idm=0&num=8 Образовательный портал по математике - http://www.allmath.com/ Портал образовательных ресурсов по математике - http://www.exponenta.ru/ Портал ресурсов по естественно-научным дисциплинам - http://en.edu.ru/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Основы алгебры и геометрии" предполагает использование следующего материально-технического обеспечения:

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Компьютерный класс с установленным на компьютерах пакетом SciLab

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 10.03.01 "Информационная безопасность" и профилю подготовки Безопасность компьютерных систем .

Программа дисциплины "Основы алгебры и геометрии"; 10.03.01 Информационная безопасность; профессор, д.н. (профессор) Столов Е.Л.

Автор(ы): Столов Е.Л.			
"	_201_	г.	_
Рецензент(ы): Латыпов Р.Х.			
"_"	201_	г.	