МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

Системы параллельных вычислений Б1.В.ДВ.9

Направление подготовки: <u>02.03.02 - Фундаментальная информатика и информационные</u> технологии
Профиль подготовки: <u>Системный анализ и информационные технологии</u>
Квалификация выпускника: <u>бакалавр</u>
Форма обучения: очное
Язык обучения: русский
Автор(ы):
Тагиров Р.Р., Афанасьев Марат Наилевич
Рецензент(ы):
Тагиров Р.Р.
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Латыпов Р. Х. Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:
Протокол заседания УМК No от "" 201г

Казань 2017

Регистрационный No 922217

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) старший преподаватель, б/с Тагиров Р.Р. кафедра системного анализа и информационных технологий отделение фундаментальной информатики и информационных технологий, Ravil.Tagirov@kpfu.ru; Афанасьев Марат Наилевич

1. Цели освоения дисциплины

В рамках курса "Системы параллельных вычислений" предлагается изучение аппаратной и программной части многопроцессорных и многомашинных вычислительных систем, классификация такого рода систем, а также разбор некторых типовых задач

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ДВ.9 Дисциплины (модули)" основной образовательной программы 02.03.02 Фундаментальная информатика и информационные технологии и относится к дисциплинам по выбору. Осваивается на 4 курсе, 7 семестр.

Данная дисциплина относится к профессиональным дисциплинам.

Читается на 4 курсе в 7 семестре для студентов обучающихся по направлению 'Фундаментальная информатика и информационные технологии'. Дисциплина изучается на старших курсах, что предполагает уже полученные студентами знания в областях программирования ('Основы программирования', "Языки программирования), аппаратной части вычислительной техники ('Архитектура вычислительных систем', 'Физические основы ЭВМ'), а также знания из наиболее популярных для распараллеливания областей математики ('Методы оптимизации и исследование операций', 'Вычислительные методы'). Полученные при изучении курса знания могут помочь при написании выпускной квалификационной работы, а также в дальнейшей профессиональной деятельности выпускника.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОПК-1 (профессиональные компетенции)	способность использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с фундаментальной информатикой и информационными технологиями
ОПК-2 (профессиональные компетенции)	способность применять в профессиональной деятельности современные языки программирования и языки баз данных, методологии системной инженерии, системы автоматизации проектирования, электронные библиотеки и коллекции, сетевые технологии, библиотеки и пакеты программ, современные профессиональные стандарты информационных технологий
ОПК-3 (профессиональные компетенции)	способность к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям

Шифр компетенции	Расшифровка приобретаемой компетенции				
ОПК-4 (профессиональные компетенции)	способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности				

В результате освоения дисциплины студент:

- 1. должен знать:
- понимать принципы построения и функционирования аппаратно-программных комплексов, предназначенных для проведения параллельных вычислений
- 2. должен уметь:
- ориентироваться в аппаратном и программном обеспечении параллельных систем
- 3. должен владеть:
- теоретическими знаниями о построении и программировании параллельных систем
- 4. должен демонстрировать способность и готовность:
- применять полученные знания в своей профессиональной деятельности

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины зачет в 7 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
					Лекции	Практические занятия	Лабораторные работы	
	١.	Тема 1. Архитектуры компьютеров параллельного действия	7		6	0	3	Письменное домашнее задание
	2.	Тема 2. Сети межсоединений	7		6	0	3	Письменное домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах) Лекции		Текущие формы контроля	
	-			Лекции	практические занятия	лаоораторные работы	
3.	Тема 3. Производительность СПВ	7		4	0	2	Письменное домашнее задание
4.	Тема 4. Программное обеспечение	7		4	0	2	Письменное домашнее задание
5.	Тема 5. Классификация компьютеров параллельного действия, мультипроцессорные системы	7		4	0	2	Письменное домашнее задание
6.	Тема 6. Классификация компьютеров параллельного действия, многомашинные системы	7		4	0	2	Письменное домашнее задание
7.	Тема 7. ПО для многомашинных систем	7		4	0	2	Письменное домашнее задание
8.	Тема 8. Большие задачи параллельных вычислений	7		4	0	2	Контрольная работа
	Тема . Итоговая форма контроля	7		0	0	0	Зачет
	Итого			36	0	18	

4.2 Содержание дисциплины

Тема 1. Архитектуры компьютеров параллельного действия

лекционное занятие (6 часа(ов)):

Архитектуры компьютеров параллельного действия: основные задачи, многопроцессорные и многомашинные системы, принципы конструирования и функционирования

лабораторная работа (3 часа(ов)):

Выбор задач для эффективного распараллеливания: обработка изображений, задачи линейной алгебры, анимация

Тема 2. Сети межсоединений

лекционное занятие (6 часа(ов)):

Сети межсоединений: построение эффективных сетей передачи данных для осущесвления взаимодействия вычислительных устройств и памяти в СПВ

лабораторная работа (3 часа(ов)):

Распараллеливание задачи поиска образа на чёрно-белом или цветном изображении

Тема 3. Производительность СПВ

лекционное занятие (4 часа(ов)):

Производительность СПВ оценка пиковой производительности параллельной системы, методы достижения пиковой производительности

лабораторная работа (2 часа(ов)):

Распараллеливание задачи умножения больших матриц

Тема 4. Программное обеспечение

лекционное занятие (4 часа(ов)):

Программное обеспечение: способы пострения параллельного ПО, модели управления, вычислительные парадигмы, методы коммуникации, синхронизация

лабораторная работа (2 часа(ов)):

Реализация семафора с помощью массива

Тема 5. Классификация компьютеров параллельного действия, мультипроцессорные системы

лекционное занятие (4 часа(ов)):

Классификация компьютеров параллельного действия, мультипроцессорные системы: классификация Флинна, однопроцессорные системы, системы с векторными процессорами, мультипроцессорные системы с памятью общего использования, UMA SMP, когерентность кешей, UMA с коомутируемой сетью межсоединений, NUMA, COMA

лабораторная работа (2 часа(ов)):

Параллельная реализация алгоритма умножения матриц с помощью векторных операций на специализированных процессорах

Тема 6. Классификация компьютеров параллельного действия, многомашинные системы

лекционное занятие (4 часа(ов)):

Классификация компьютеров параллельного действия, многомашинные системы? Многомашинные системы с передачей сообщений, массивно-параллельные системы, кластеры и сети рабочих станций, ПО для управления многомашинными системами, коммерческие сети межсоединений

лабораторная работа (2 часа(ов)):

Параллельная реализация алгоритма вычисления определителя матрицы с помощью системы MPI

Тема 7. ПО для многомашинных систем

лекционное занятие (4 часа(ов)):

ПО для многомашинных систем? связное ПО для ММС, системы PVM и MPI, совместно используемая память, распределённая совместно используемая память, системы "Linda" и "Orca"

лабораторная работа (2 часа(ов)):

Параллельная реализация алгоритма вычисления определителя матрицы с помощью системы PVM

Тема 8. Большие задачи параллельных вычислений

лекционное занятие (4 часа(ов)):

Большие задачи параллельных вычислений: климатические и аэродинамические модели, цикл моделирования, граф алгоритма

лабораторная работа (2 часа(ов)):

Параллельная реализация алгоритма решения системы линейных уравнений по методу Гаусса

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 1. Архитектуры компьютеров параллельного действия	7		подготовка домашнего задания	12	домашнее задание
2.	Тема 2. Сети межсоединений	7		подготовка домашнего задания	12	домашнее задание
3.	Тема 3. Производительность СПВ	7		подготовка домашнего задания	8	домашнее задание
4.	Тема 4. Программное обеспечение	7		подготовка домашнего задания	8	домашнее задание
	Тема 5. Классификация компьютеров параллельного действия, мультипроцессорные системы	7		подготовка домашнего задания	8	домашнее задание
8.	Тема 8. Большие задачи параллельных вычислений	7		подготовка к контрольной работе	6	контрольная работа
	Итого				54	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных и практических занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. Причем конспект лекций, который остается у студента в результате прослушивания лекции не может заменить учебник. Его цель - формулировка основных утверждений и определений. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебнике. Список литературы разделен на две категории: необходимый для сдачи зачета минимум и дополнительная литература.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для более глубокого понимания разделов дисциплины "Системы параллельных вычислений" на основе решения задач и упражнений, иллюстрирующих доказываемые теоретические положения, а также развитие абстрактного мышления и способности самостоятельно доказывать частные утверждения.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы. Кроме того, самостоятельная работа включает подготовку к зачету. При подготовке к сдаче зачета весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к зачету, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда всегда будет резерв времени.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Архитектуры компьютеров параллельного действия

домашнее задание, примерные вопросы:

Выбор задач для эффективного распараллеливания: обработка изображений, задачи линейной алгебры, анимация

Тема 2. Сети межсоединений

домашнее задание, примерные вопросы:

Распараллеливание задачи поиска образа на чёрно-белом или цветном изображении

Тема 3. Производительность СПВ

домашнее задание, примерные вопросы:

Распараллеливание задачи умножения больших матриц

Тема 4. Программное обеспечение

домашнее задание, примерные вопросы:

Реализация семафора с помощью массива

Тема 5. Классификация компьютеров параллельного действия, мультипроцессорные системы

домашнее задание, примерные вопросы:

Параллельная реализация алгоритма умножения матриц с помощью векторных операций на специализированных процессорах

Тема 6. Классификация компьютеров параллельного действия, многомашинные системы

Тема 7. ПО для многомашинных систем

Тема 8. Большие задачи параллельных вычислений

контрольная работа, примерные вопросы:

Контрольная работа по созданию параллельной программы. Типовое задание. Написать программу решения задачи линейного программирования симплексным методом с помощью одной из библиотек параллельных вычислений.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

По данной дисциплине предусмотрено проведение зачета. Примерные вопросы для зачета - Приложение1.

Зачёт проводится по решению практических задач.

Примерные задачи

Распараллеливание задачи поиска образа на чёрно-белом изображении с заданной погрешностью

Распараллеливание задачи поиска образа на цветном изображении с заданной погрешностью

Распараллеливание задачи умножения больших разреженных матриц, представленных в виде линейных списков

7.1. Основная литература:

1. Линев, Алексей Владимирович. Технологии параллельного программирования для процессоров новых архитектур: учебник для студентов высших учебных заведений/ А. В. Линев, Д. К. Боголепов, С. И. Бастраков; под ред. В. П. Гергеля; Нижегор. гос. ун-т им. Н. И. Лобачевского. Москва: Изд-во Московского университета, 2010. 148 с.

- 2. Инструменты параллельного программирования в системах с общей памятью: учебник для студентов высших учебных заведений/ К.В. Корняков, В.Д. Кустикова, И.Б. Мееров [и др.]; под ред. проф. В.П. Гергеля; Нижегор. гос. ун-т им. Н.И. Лобачевского, Координац. совет Системы науч.-образоват. центров суперкомпьютер. технологий.?2-е изд., испр. и доп..?Москва: Изд-во Московского университета, 2010.?262 с.
- 3. Сырецкий, Г. А. Информатика. Фундаментальный курс. Том II. Информационные технологии и системы /Г. А. Сырецкий. ? СПб.: БХВ-Петербург, 2007. ? 846 с. http://znanium.com/bookread.php?book=350042
- 4. Архитектура ЭВМ и вычислительных систем: Учебник / Н.В. Максимов, Т.Л. Партыка, И.И. Попов. - 5-е изд., перераб. и доп. - М.: Форум: НИЦ ИНФРА-М, 2015 - 512 с. http://znanium.com/bookread2.php?book=552537
- 5. Эффективное программирование современных микропроцессоров/МарковаВ.П., КиреевС.Е., ОстапкевичМ.Б. и др. - Новосиб.: НГТУ, 2014. - 148 с. http://znanium.com/bookread2.php?book=548254

7.2. Дополнительная литература:

- 1. Боресков А.В. Параллельные вычисления на GPU: архитектура и программная модель CUDA: учебное пособие для студентов высших учебных заведений, обучающихся по направлениям ВПО 010400 'Прикладная математика и информатика' и 010300 'Фундаментальная информатика и информационные технологии' / [А. В. Боресков и др.; предисл. В. А. Садовничий]; Моск. гос. ун-т им. М.В. Ломоносова.-Москва: Изд-во Московского университета, 2012.-332 с.
- 2. Федотова Е. Л. Прикладные информационные технологии: Учебное пособие / Е.Л. Федотова, Е.М. Портнов. - М.: ИД ФОРУМ: НИЦ ИНФРА-М, 2013. - 336 с. http://znanium.com/bookread.php?book=392462
- 3. Быкова, В. В. Теоретические основы анализа параметризированных алгоритмов [Электронный ресурс]: Монография / В. В. Быкова. - Красноярск: Сиб. федер. ун-т, 2011. -180 c. URL: http://www.znanium.com/bookread.php?book=441165
- 4. Архитектура ЭВМ: Учебное пособие / В.Д. Колдаев, С.А. Лупин. М.: ИД ФОРУМ: НИЦ ИНФРА-M, 2014. - 384 c. http://znanium.com/bookread2.php?book=424016

7.3. Интернет-ресурсы:

Википедия - http://ru.wikipedia.org/

Интернет-журнал по ИТ - http://www.rsdn.ru

Интернет-портал с образовательными материалами по ИТ - http://www.intuit.ru

Портал информационных ресурсов по параллельным вычислениям -

http://parallel.ru/info/sites.html

Форум по технологиям параллельных вычислений - http://www.mpi-forum.org/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Системы параллельных вычислений" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Лекции по дисциплине проводятся в аудитории, оснащенной доской и мелом(маркером), практические занятия по дисциплине проводятся в компьютерном классе.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 02.03.02 "Фундаментальная информатика и информационные технологии" и профилю подготовки Системный анализ и информационные технологии .

Автор(ы):		
Тагиров Р.Р		
Афанасьев	Марат Наилевич _	
""	201 г.	
Рецензент(ы):	
Тагиров Р.Р		
" "	201 г.	