МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

УТВЕРЖДАЮ

Программа дисциплины

Языки и методы программирования Б1.В.ОД.5

Направление подготовки: 01.03.02 - Прикладная математика и информатика
Профиль подготовки: <u>Системное программирование</u>
Квалификация выпускника: <u>бакалавр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
Ахтямов Р.Б., Бухараев Н.Р., Самитов Р.К.
Рецензент(ы):
-
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Аблаев Ф. М. Протокол заседания кафедры No от "" 201г
Учебно-методическая комиссия Института вычислительной математики и информационных технологий:
Протокол заседания УМК No от "" 201г
Регистрационный No

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Ахтямов Р.Б. кафедра теоретической кибернетики отделение фундаментальной информатики и информационных технологий, Raouf.Akhtiamov@kpfu.ru; доцент, к.н. (доцент) Бухараев Н.Р. кафедра технологий программирования отделение фундаментальной информатики и информационных технологий, boukharay@gmail.com; Самитов Р.К.

1. Цели освоения дисциплины

Цель курса - ввести в круг понятий и задач, связанных с использованием языков программирования, с тем, чтобы студенты могли самостоятельно создавать программы на языках высокого уровня. Задача курса состоит в выработке у студентов навыков использования языков программирования для создания систем обработки данных и обоснованного выбора средств программирования. Курс поддерживается соответствующей учебной (аудиторной) практикой и практикумом на ЭВМ.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.5 Дисциплины (модули)" основной образовательной программы 01.03.02 Прикладная математика и информатика и относится к обязательным дисциплинам. Осваивается на 1 курсе, 1 семестр.

"Языки и методы программирования " входит в состав профессиональных дисциплин. Читается на 1 курсе, в 1 семестре

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОПК-2 (профессиональные компетенции)	способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии
ОПК-3 (профессиональные компетенции)	способность к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям

В результате освоения дисциплины студент:

1. должен знать:

конструктивную математическую природу средств процедурного программирования;

- 2. должен уметь:
- ориентироваться в составе, назначении и семантике средств процедурного программирования с целью их обоснованного выбора при разработке программ решения задач;
- 3. должен владеть:

навыками алгоритмизации задач и использования языка программирования для описания алгоритмов.

4. должен демонстрировать способность и готовность:

применять теоретические знания об основных понятиях процедурного программирования - данные и структуры данных, действия и структуры управления, состояния и поведение программы;

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 6 зачетных(ые) единиц(ы) 216 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы
	Модуля	-		Лекции	Практи- ческие занятия	торные	контроля
'-	Тема 1. Поведение объектов - динамические процессы и их математическое информационное моделирование.	1		18	0	12	Письменное домашнее задание Контрольная работа
2.	Тема 2. Особенности определения и использования формальных языков.	1		18	0	12	Письменное домашнее задание Контрольная работа
3.	Тема 3. Последовательные рекуррентные вычисления и вычисления разбором случаев.	1		18	0	12	Письменное домашнее задание
	Тема . Итоговая форма контроля	1		0	0	0	Экзамен
	Итого			54	0	36	

4.2 Содержание дисциплины

Тема 1. Поведение объектов - динамические процессы и их математическое информационное моделирование.

лекционное занятие (18 часа(ов)):

Поведение объектов - динамические процессы и их математическое информационное моделирование. Специфика и специализация математических языков описания моделей. Внешняя среда процесса, входные и выходные информационные потоки. Цель и точность модели. Спецификация как однозначная постановка целевой задачи, формальное определение преобразования входных потоков в выходные на некотором языке.

лабораторная работа (12 часа(ов)):

Обсуждение базовых понятий и принципов. Решение задач по теме 1.

Тема 2. Особенности определения и использования формальных языков. *лекционное занятие (18 часа(ов)):*

Особенности формальных языков. Синтаксис и основные классы понятий (T,C,V,E,S), семантика и прагматика языков программирования.

лабораторная работа (12 часа(ов)):

Обсуждение базовых понятий и принципов. Решение задач по теме 2

Тема 3. Последовательные рекуррентные вычисления и вычисления разбором случаев. *пекционное занятие (18 часа(ов)):*

Последовательные рекуррентные вычисления и вычисления разбором случаев. Разработка рекуррентных соотношений (информационных связей) и уровней управления вычислениями (вложений структур управления). Повторные (пере)вычисления и сохранение результатов вычислений для их повторного использования.

лабораторная работа (12 часа(ов)):

Обсуждение базовых понятий и принципов. Решение задач по теме 3.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел дисциплины	Се- местр	Неде- ля семе стра	Виды самостоятельной работы студентов	Трудо- емкость (в часах)	Формы контроля самосто- ятельной работы									
1.	Тема 1. Поведение объектов - динамические	1		подготовка домашнего задания	21	домаш- нее задание									
	процессы и их математическое информационное моделирование.			подготовка к контрольной работе	10	контроль- ная работа									
2.	Тема 2. Особенности определения и использования формальных языков.	1		подготовка домашнего задания	21	домаш- нее задание									
															подготовка к контрольной работе
3.	Тема 3. Последовательны рекуррентные вычисления и вычисления разбором случаев.	e 1		подготовка домашнего задания	1	домаш- нее задание									
	Итого				72										

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лекционных и лабораторных занятий, а также самостоятельной работы студентов.

Теоретический материал излагается на лекциях. Причем конспект лекций, который остается у студента в результате прослушивания лекции не может заменить учебник. Его цель-формулировка основных утверждений и определений. Прослушав лекцию, полезно ознакомиться с более подробным изложением материала в учебнике. Список литературы разделен на две категории: необходимый для сдачи зачета минимум и дополнительная литература.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для более глубокого понимания разделов на основе решения задач и упражнений, иллюстрирующих доказываемые теоретические положения, а также развитие абстрактного мышления и способности самостоятельно доказывать утверждения.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы.

Кроме того, самостоятельная работа включает подготовку к экзамену. При подготовке к сдаче экзамена весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к экзамену, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда будет резерв времени.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Поведение объектов - динамические процессы и их математическое информационное моделирование.

домашнее задание, примерные вопросы:

Операторы цикла while и repeat. Оператор for - частный случай while. Найти сумму y=1+..+n, для заданного n с помощью цикла while, repeat Одномерный массив. Написать программу нахождения максимума. Найти сумму отрицательных элементов в массиве.

контрольная работа, примерные вопросы:

Найти n-ый член последовательности Фибоначчи. Найти сумму четных чисел в диапазоне [1..n]

Тема 2. Особенности определения и использования формальных языков.

домашнее задание, примерные вопросы:

Двумерные массивы. Ввод и вывод массива. Для каждой строчки матрицы найти ее максимальный элемент Оператор процедуры. Написать процедуру ввода и вывода матрицы. Написать функцию определения, является ли число простым.

контрольная работа, примерные вопросы:

Задан массив целых чисел. Упорядочить массив по неубыванию одним из методов сортировки. Найти сумму проостых чисел в массиве.

Тема 3. Последовательные рекуррентные вычисления и вычисления разбором случаев.

домашнее задание, примерные вопросы:

Написать процедуру сложения, умножения двух матриц. Написать процедуру транспонирования матрицы.

Итоговая форма контроля

экзамен (в 1 семестре)

Примерные вопросы к итоговой форме контроля

По данной дисциплине предусмотрено проведение экзамена и промежуточных тестов.

Примерные вопросы	для	экзамена	:
ТЕОРИЯ.			

Theory 1.1

Программирование как математическое моделирование, последовательное описание строения и поведения сложных динамических систем ограниченными и простыми средствами. Синтаксис, семантика, прагматика языков программирования. Тип данных. Классификация типов - стандартные/пользовательские, базовые/производные, статические/динамические.

Theory 1.2.

Состояние вычислений. Процедура. Аргументы, результаты выполнения и вспомогательные переменные определения процедуры. Спецификация и реализация. Характеристики реализации - правильность (соответствие спецификации) и эффективность. Примеры экономии памяти выбором структур данных (последовательная обработка массивов) и времени (параллельные рекуррентные вычисления - вычисление сложных сумм).

Theory 1.3.

Переменные в программировании как хранилища (память). Память внутренняя (оперативная) и внешняя (файлы). Потоки данных. Операторы присваивания (кратное, простое, бинарное) и ввода/вывода. Программы как файловые процедуры.

Theory 1.4.

Процедурное программирование как язык прямых определений. Предикаты. Языки блок-схем. Уровни языков программирования и функциональная эквивалентность. Ветки и трассы вычислений. Пример трассировки.

Theory 1.5.

Определение языков порождением. Структурное программирование как определение функций композицией, разбором, рекуррентой. Эквивалентность структурных и всех б/с на примере "побочный выход из цикла".

Theory 1.6.

Условные операторы Паскаля: синтаксис, семантика в терминах б/с, соотношение по выразимости.

Theory 1.7.

Операторы цикла в Паскале: с пост и предусловиями, оператор цикла с параметром, синтаксис, семантика в терминах б/с, соотношение по выразимости.

Theory 1.8.

Классификация типов процедурного Паскаля. Скалярные типы Паскаля - стандартные, перечислимые и ограниченные типы.

Theory 1. 9.

Булевский тип. Операции алгебры логики и логические выражения. Предикаты. Стратегии вычисления сложных свойств. \square - и \square -свойства.

Theory 1. 10.

Тип данных массив. Массивы как соответствия (табличные функции). Операция выборки (аппликации). Пример использования нечисловых индексных типов. Сравнение - массивы и файлы (на примере).

Theory 1.11

Упорядоченные массивы. Дихотомический поиск. Операции над упорядоченными массивами (определение).

Theory 1. 12

Тип данных запись. Записи как состояния. Именованные декартовы произведения. Оператор присоединения. Пример описания объектов в терминах записей.

Theory 1.13

Множества. Эквивалентность теоретико-множественных и логических обозначений. Пример использования ("решето Эратосфена").

Theory 1. 14.

Файлы - внутренние и внешние, общего вида и текстовые. Файлы как последовательности (декартовы степени). Сравнение - массивы и файлы (на примере).

Theory 1.15

Упорядоченные файлы. Поиск. Операции над упорядоченными файлами - определение, реализации одной из операций (по выбору экзаменатора).

Theory 1. 16

Синтаксис процедур и функций: описание=заголовок + блок. Формальные и фактические параметры, обращение к процедуре. Область действия определения. Локальные и глобальные объекты процедур.

Theory 1. 17.

Семантика процедур и функций. Семантика обращений - правила построения модифицированного тела процедуры: коллизия имен, семантика параметров. Правила локализации. Побочные эффекты.

Задачи

А - Массивы.

А1 Формольные вышиополия, опторить опожения "оторбиком". Нейти остион окумь о п

А1. Формальные вычисления - алгоритм сложения "столбиком". Найти запись суммы с по записям слагаемых a,b a,b,c ☐ [1..nMax]◊['0'..'9']

- В тип integer разрешено переводить лишь цифры, не записи в целом!

А2. Вычисление свойств. Проверка периодичности числовой последовательности А[1..n].

- A - периодическая ≈ найдется k [1..n div 2], что попарно равны все элементы, "отстоящие" друг от друга на k.

А3. Дана последовательность A[1..n], I iI [1..n) A[i]>0, A[n]=0. Ступенька - подпоследовательность A[k..m], I iI [k..m) (A[i]<A[i+1]). Найти длину наибольшей ступеньки.

М - Двумерные массивы (матрицы)

М1. Генерация файла. Дана матрица a, a ☐ [1..n,1..m]◊Real. Точка a[i,j] - седловая, если $(a[i,i]=min \{a[i,k]: k \mid [1..n]\}$ and $a[i,i]=max \{a[k,i]: k \mid [1..m]\})$ or $(a[i,i]=\max \{a[i,k]: k | [1..n]\} \text{ and } a[i,i]=\min \{a[k,i]: k | [1..m]\})$

Найти все седловые точки.

- не перевычислять max и min!

M2. Вычисление свойств. Дана матрица a, a [[1..n,1..n]◊Integer. a- магический квадрат, если ([] i,j [] [1..n,1..n] (a[i,j] [] [1..n]) and

 $[] i,j = [1..n,1..n] ([] {a[i,k]: k = [1..n] = [] {a[k,j]: k = [1..n]})$

Выяснить, является ли а магическим квадратом.

О - Сортировка.

О1. Сортировка массивов обменом пар

- Спецификация: Упорядочен(A)=☐ i ☐ [1..n) (A[i]☐A[i+1])

О2. Сортировка массива сведением к нахождению максимума

- Спецификация: Упорядочен(A)=☐ i ☐ [1..n] (A[i]=min A[i..n])

О2. Сортировка массива последовательным включением

- Включение(A[1..i],b)=упорядоченный массив длины i+1, содержащий компоненты A[1..i] и значение b
- Упорядочен(A)=☐ i ☐ [1..n] (A[1..i+1]=Включение(A[1..i],A[i+1]))

ОА - упорядоченные массивы.

ОА1. Дихотомический поиск (метод деления пополам)

ОА2. Проверить включение одного упорядоченного массива а1 в другой, а2 также упорядоченный. a1, a2, a3 ☐ [1..nMax]◊T, T=real.

- 1 проход!

ОАЗ. Найти разность аЗ двух упорядоченных массивов a1, a2. a1,a2,a3 [[1..nMax]\0T. T=real.

- 1 проход!

ОА4. Найти объединение а3 двух упорядоченных массивов a1, a2. a1,a2,a3 ☐ [1..nMax]◊Т. T=real.

- 1 проход!

OA5. Найти пересечение двух упорядоченных массивов a, b [] [1..nMax]\0.000T.

- 1 проход!

S - Множества.
S1. Найти все простые числа, меньшие заданного n - Алгоритм "Решето Эратосфена".
S2. Моделирование типов. Определить тип множество массивами [1nMax]◊Boolean.
F1. Найти длину lmax самого длинного слова w в текстовом файле f и само это слово w Известно, что lmax[]100
F2. Преобразование типов. Последовательность целых чисел задана текстовым файлом f их десятичных записей. f 🛘 {' ','0''9'}*. Найти сумму.
F3. Порождение файлов. Дан массив целых чисел, не больших 1000. Породить файл их десятичных записей, разделенных 1 пробелом. Незначащие нули в запись не включать.
OF. Упорядоченные файлы.
OF1. Проверить включение одного упорядоченного файла f1 в другой, f2 - также упорядоченный
- 1 проход!
OF2. Слияние упорядоченных файлов f1,f2 в упорядоченный же f3=f1∪f2 1 проход!
ОF3. Найти разность f3 двух упорядоченных файлов f1, f2 ☐ file of T, T=real 1 проход!
ОF4. Найти пересечение f3 двух упорядоченных файлов f1, f2 ☐ file of T, T=real 1 проход!
R. Записи.
R1. Вычислить значение многочлена над рациональными числами по схеме Горнера ("слева"). Многочлен представлен (статическим) массивом, рациональные числа - записью с полями Chislitel, Znamenatel.
R2. Вычисление свойств. Дана последовательность (файл) точек плоскости (запись/полярные координаты). Выяснить, лежат ли они на заданной прямой (коэффициенты линейного уравнения)
R3. Вычисление свойств. Дана последовательность (массив) точек плоскости (запись/декартовы координаты). Выяснить, лежат ли они на окружности заданного радиуса с центром в начале координат.
R4. Провести зачисление абитуриентов - вывести список тех из них, кто либо имеет медаль и сдал 1 экзамен на 5, либо набрал заданный проходной балл. Абитуриенты представлены файлом записей (описание - по выбору).

7.1. Основная литература:

- 11.Программирование на языке Си/А.В.Кузин, Е.В.Чумакова М.: Форум, НИЦ ИНФРА-М, 2015. 144 с. (Высшее образование) ISBN 978-5-00091-066-5 Режим доступа: http://znanium.com/bookread2.php?book=505194
- 2.Программирование на языке Си [Электронный ресурс] : учеб. пособие / Р. Ю. Царев. Красноярск : Сиб. федер. ун-т, 2014. - 108 с. - ISBN 978-5-7638-3006-4 - Режим доступа: http://znanium.com/bookread2.php?book=510946
- 3. Программирование на языке высокого уровня. Программирование на языке Object Pascal: учеб. пособие / Т.И. Немцова, С.Ю. Голова, И.В. Абрамова; под ред. Л.Г. Гагариной. М.: ИД 'ФОРУМ': ИНФРА-М, 2018. 496 с. Режим доступа: http://znanium.com/catalog/product/944326
- 4. Программирование на языке Pascal: Пособие / Рапаков Г.Г., Ржеуцкая С.Ю. СПб:БХВ-Петербург, 2014. 473 с. ISBN 978-5-9775-2003-4 Режим доступа: http://znanium.com/bookread2.php?book=940323
- 5. Программирование на языке высокого уровня. Программирование на языке C++: учеб. пособие / Т.И. Немцова, С.Ю. Голова, А.И. Терентьев; под ред. Л.Г. Гагариной. ? М.: ИД 'ФОРУМ': ИНФРА-М, 2018. 512 с. Режим доступа: http://znanium.com/catalog/product/918098

7.2. Дополнительная литература:

- 1.Машнин Т. С. Современные Java-технологии на практике: Практическое руководство / Машнин Т.С. СПб:БХВ-Петербург, 2010. 560 с. ISBN 978-5-9775-0561-1 Режим доступа: http://znanium.com/catalog/product/351236
- 2. Васюткина И.А. Технология разработки объектно-ориентированных программ на JAVA / Васюткина И.А.- Новосиб.:НГТУ, 2012. 152 с.: ISBN 978-5-7782-1973-1 Режим доступа: http://znanium.com/catalog.php?bookinfo=557111
- 3. Марченков, С.С. Основы теории булевых функций [Электронный ресурс] : учебное пособие / С.С. Марченков. Электрон. дан. Москва : Физматлит, 2014. 136 с. Режим доступа: https://e.lanbook.com/book/59714

7.3. Интернет-ресурсы:

Программирование на языке C++: Учебное пособие / Т.И. Немцова, С.Ю. Голова, А.И. Терентьев; Под ред. Л.Г. Гагариной. - М.: ИД ФОРУМ: ИНФРА-М, 2012. - 512 с.: ил.; 60х90 1/16 + CD-ROM. - (Проф. обр.). (п, cd rom) ISBN 978-5-8199-0492-3 4 - http://znanium.com/bookread2.php?book=244875

Вирт, Н. Алгоритмы и структуры данных. Новая версия для Оберона + CD [Электронный ресурс] / Никлаус Вирт; пер. с англ. Ф. В. Ткачев. - М.: ДМК Пресс, 2010.-272 с.: ил. - ISBN 978-5-94074-584-6 - http://znanium.com/bookread2.php?book=408420

Программирование на языке Pascal: Пособие / Рапаков Г.Г., Ржеуцкая С.Ю. - СПб:БХВ-Петербург, 2014. - 473 с. ISBN 978-5-9775-2003-4 - http://znanium.com/bookread2.php?book=940323

Программирование на языке Си [Электронный ресурс] : учеб. пособие / Р. Ю. Царев. - Красноярск : Сиб. федер. ун-т, 2014. - 108 с. - ISBN 978-5-7638-3006-4 - http://znanium.com/bookread2.php?book=510946

Программирование на языке Си/А.В.Кузин, Е.В.Чумакова - М.: Форум, НИЦ ИНФРА-М, 2015. - 144 с.: 70x100 1/16. - (Высшее образование) (Обложка) ISBN 978-5-00091-066-5, 300 экз. - http://znanium.com/bookread2.php?book=505194

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Языки и методы программирования" предполагает использование следующего материально-технического обеспечения:

лекции и лабораторные занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом (маркером)

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 01.03.02 "Прикладная математика и информатика" и профилю подготовки Системное программирование .

Автор(ы):	
Ахтямов Р.Б	
Бухараев Н.Р.	
Самитов Р.К	
"	_201 г.
Рецензент(ы):	
" "	201 г.