# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий



# **УТВЕРЖДАЮ**

# Программа дисциплины

Теория конечных графов и ее приложения Б1.В.ОД.6

| Направление подготовки: <u>02.03.02 - Фундаментальная информатика и информационные</u> <u>технологии</u> |
|----------------------------------------------------------------------------------------------------------|
| Профиль подготовки: Системный анализ и информационные технологии                                         |
| Квалификация выпускника: бакалавр                                                                        |
| Форма обучения: <u>очное</u>                                                                             |
| Язык обучения: русский                                                                                   |
| Автор(ы):                                                                                                |
| Нурмеев Н.Н.                                                                                             |
| Рецензент(ы):                                                                                            |
| <u>Пшеничный П.В.</u>                                                                                    |
| СОГЛАСОВАНО:                                                                                             |
| Заведующий(ая) кафедрой: Аблаев Ф. М.<br>Протокол заседания кафедры No от "" 201г                        |
| Учебно-методическая комиссия Института вычислительной математики и информационных технологий:            |
| Протокол заседания УМК No от "" 201г                                                                     |
| Регистрационный No                                                                                       |
| Казань                                                                                                   |
| 2016                                                                                                     |



### Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Нурмеев Н.Н. кафедра теоретической кибернетики отделение фундаментальной информатики и информационных технологий. Nail.Nurmeev@kpfu.ru

# 1. Цели освоения дисциплины

Основной целью освоения студентами данной дисциплины является изучение методов математического описания структуры разнообразных объектов, ознакомление с результатами анализа структурных свойств этих объектов, а также с алгоритмическими построениями, достигнутыми в этой области к настоящему времени.

# 2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.6 Дисциплины (модули)" основной образовательной программы 02.03.02 Фундаментальная информатика и информационные технологии и относится к обязательным дисциплинам. Осваивается на 2 курсе, 3 семестр.

Данная дисциплина относится к общепрофессиональным дисциплинам.

Читается на 2 курсе в 3 семестре для студентов обучающихся по направлению "Фундаментальная информатика и информационные технологии".

# 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

| Шифр компетенции                           | Расшифровка<br>приобретаемой компетенции                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОПК-1<br>(профессиональные<br>компетенции) | способностью использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с фундаментальной информатикой и информационными технологиями                                                                                                                                                                         |
| ОПК-2<br>(профессиональные<br>компетенции) | способностью применять в профессиональной деятельности современные языки программирования и языки баз данных, методологии системной инженерии, системы автоматизации проектирования, электронные библиотеки и коллекции, сетевые технологии, библиотеки и пакеты программ, современные профессиональные стандарты информационных технологий                                       |
| ОПК-3<br>(профессиональные<br>компетенции) | способностью к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям |
| ПК-1<br>(профессиональные<br>компетенции)  | способностью собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования выводов по соответствующим научным исследованиям                                                                                                                                                                                                     |

| Шифр компетенции          | Расшифровка<br>приобретаемой компетенции                                                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I .                       | способностью понимать, совершенствовать и применять современный математический аппарат, фундаментальные концепции и системные методологии, международные и профессиональные стандарты в области информационных технологий |
| ПК-6<br>(профессиональные | способностью эффективно применять базовые математические знания и информационные технологии при решении проектно-технических и прикладных задач, связанных с развитием и использованием информационных технологий         |

В результате освоения дисциплины студент:

- 1. должен знать:
- основные типы объектов и структур, изучаемых теорией графов
- различные свойства графов и связанных с ними объектов в рамках предлагаемого курса
- типовые методы, используемые при работе с графами, орграфами, мультиграфами и сетями
- постановки наиболее известных задач на графах и сетях и эффективные алгоритмы их решения

#### 2. должен уметь:

- формулировать прикладные и теоретические задачи на языке графов и сетей, осуществлять подбор эффективных алгоритмов для их решения
- разработать программную реализацию выбранного алгоритма, произвести отладку программы и интерпретировать результаты ее работы
- применять полученные теоретические знания для доказательства различных свойств графов и связанных с ними объектов
- 3. должен владеть:
- навыками решения прикладных задач о графах
- применять полученные знания в своей профессиональной деятельности

#### 4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 5 зачетных(ые) единиц(ы) 180 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

### 4.1 Структура и содержание аудиторной работы по дисциплине/ модулю



### Тематический план дисциплины/модуля

| N  | Раздел<br>Дисциплины/<br>Модуля                              | Семестр | Неделя<br>семестра | Виды и часы<br>аудиторной работы,<br>их трудоемкость<br>(в часах) |                         |                        | Текущие формы<br>контроля         |
|----|--------------------------------------------------------------|---------|--------------------|-------------------------------------------------------------------|-------------------------|------------------------|-----------------------------------|
|    | МОДУЛЯ                                                       |         |                    | Лекции                                                            | Практические<br>занятия | Лабораторные<br>работы |                                   |
| 1. | Тема 1. Графы:<br>основные понятия                           | 3       |                    | 0                                                                 | 0                       | 9                      | письменное<br>домашнее<br>задание |
| 2. | Тема 2.<br>Представления<br>графов                           | 3       |                    | 0                                                                 | 0                       | 9                      | письменное<br>домашнее<br>задание |
| 3. | Тема 3.<br>Ориентированные и<br>неориентированные<br>деревья | 3       |                    | 0                                                                 | 0                       | 9                      | письменное<br>домашнее<br>задание |
| 4. | Тема 4. Задачи о путях<br>на графе                           | 3       |                    | 0                                                                 | 0                       | 9                      | письменное<br>домашнее<br>задание |
| 5. | Тема 5. Потоки в сетях                                       | 3       |                    | 0                                                                 | 0                       | 9                      | письменное<br>домашнее<br>задание |
| 6. | Тема 6. NP-полные<br>задачи на графах                        | 3       |                    | 0                                                                 | 0                       | 9                      | письменное<br>домашнее<br>задание |
|    | Тема . Итоговая<br>форма контроля                            | 3       |                    | 0                                                                 | 0                       | 0                      | экзамен                           |
|    | Итого                                                        |         |                    | 0                                                                 | 0                       | 54                     |                                   |

#### 4.2 Содержание дисциплины

# Тема 1. Графы: основные понятия лабораторная работа (9 часа(ов)):

История развития теории графов. Возникновение понятия графа. Основные определения теории графов. Графы как модели при решении задач. Современное состояние развития теории графов. Графы как модели при решении задач. Задача Эйлера о кенигсбергских мостах. Задача Гамильтона. Исследования деревьев Кирхгофом и Кэли. Мультиграфы, ориентированные графы и сети.

# Тема 2. Представления графов лабораторная работа (9 часа(ов)):

Три способа представления графов. матрица смежности, матрица инцидентности, списки смежности. Представления конкретных графов различными способами, графы с ограниченной полустепенью исхода, произвольные графы.

# **Тема 3. Ориентированные и неориентированные деревья** *пабораторная работа (9 часа(ов)):*



Основные определения, представления деревьев. Ссылка на вершину отца. Скобочное представление. Представление множеством путей. Стандартное представление бинарного дерева. Представление бинарного дерева с помощью массива. Алгоритм Крускала. Двусвязные компоненты неориентированных графов. Представление произвольного дерева с помощью бинарного, Деревья и формулы. Обходы деревьев. Задачи на применение алгоритма Крускала. Поиск в глубину на неориентированном графе и задача о лабиринте. Поиск в ширину на неориентированном графе.

# Тема 4. Задачи о путях на графе лабораторная работа (9 часа(ов)):

Достижимость и транзитивное замыкание графа. Кратчайшие пути между всеми парами вершин. Алгоритм Дейкстры. Алгоритм Беллмана-Форда. Задача о кратчайших путях из одного источника. Реализация алгоритма Дейкстры. Кратчайшие пути в ациклических графах.

### Тема 5. Потоки в сетях

# лабораторная работа (9 часа(ов)):

Потоки и разрезы. Алгоритм Форда-Фалкерсона. Алгоритм построения максимального потока за кубическое время. Сети с единичными пропускными способностями. Реализация алгоритмов Форда-Фалкерсона и построения максимального потока. Паросочетания в общих графах.

# Тема 6. NP-полные задачи на графах *пабораторная работа (9 часа(ов)):*

Полиномиальная сходимость и NP-полные задачи. Полиномиальная разрешимость выполнимости 2-КНФ. Гамильтонов цикл. Аппроксимация для задачи ?Вершинное покрытие?. Аппроксимация для задачи коммивояжера. Клика, независимое множество, вершинное покрытие. Задача коммивояжера. Раскраска вершин графа.

# 4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

| N  | Раздел<br>Дисциплины                                         | Семестр | Неделя<br>семестра | Виды<br>самостоятельной<br>работы<br>студентов | Трудоемкость<br>(в часах) | Формы контроля<br>самостоятельной<br>работы |
|----|--------------------------------------------------------------|---------|--------------------|------------------------------------------------|---------------------------|---------------------------------------------|
| 1. | Тема 1. Графы:<br>основные понятия                           | 3       |                    | подготовка<br>домашнего<br>задания             | 1 15 1                    | домашнее<br>задание                         |
| 2. | Тема 2.<br>Представления<br>графов                           | 3       |                    | подготовка<br>домашнего<br>задания             | 1 15 1                    | домашнее<br>задание                         |
| 3. | Тема 3.<br>Ориентированные и<br>неориентированные<br>деревья | 3       |                    | подготовка<br>домашнего<br>задания             | 1 15 1                    | домашнее<br>задание                         |
| 4. | Тема 4. Задачи о путях<br>на графе                           | 3       |                    | подготовка<br>домашнего<br>задания             | 1 15 1                    | домашнее<br>задание                         |
| 5. | Тема 5. Потоки в сетях                                       | 3       |                    | подготовка<br>домашнего<br>задания             | 1 15 1                    | домашнее<br>задание                         |
| 6. | Тема 6. NP-полные<br>задачи на графах                        | 3       |                    | подготовка<br>домашнего<br>задания             | 1 15 1                    | домашнее<br>задание                         |
|    | Итого                                                        |         |                    |                                                | 90                        |                                             |

#### 5. Образовательные технологии, включая интерактивные формы обучения



Обучение происходит в форме лабораторных занятий, а также самостоятельной работы студентов.

Изучение курса подразумевает параллельное овладение студентами теоретическим материалом и получение практических навыков для более глубокого понимания разделов дисциплины "Теория конечных графов и ее приложения". Происходит это на лабораторных занятиях. Практические навык приобретаются на основе решения задач и упражнений, иллюстрирующих доказываемые теоретические положения, кроме того на занятиях студенты развивают абстрактное мышление и способность самостоятельно доказывать частные утверждения.

Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы. Кроме того, самостоятельная работа включает подготовку к экзамену. При подготовке к сдаче экзамена весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к экзамену, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда всегда будет резерв времени.

# 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

#### Тема 1. Графы: основные понятия

домашнее задание, примерные вопросы:

Углубленное изучение литературы. Изучение основных понятий теории графов.

#### Тема 2. Представления графов

домашнее задание, примерные вопросы:

Решение задач по теме. Пример: 1. докажите, что, если полустепени захода у всех вершин ориентированного графа больше нуля, то в этом графе имеется цикл 2. Докажите, что в любой группе из 6 человек есть трое попарно знакомых или трое попарно незнакомых.

# Тема 3. Ориентированные и неориентированные деревья

домашнее задание, примерные вопросы:

Решение задач по изучаемой теме. 1. Предложите рекурсивные алгоритмы для прямого и обратного обхода дерева(не обязательно бинарные). Оцените их сложность. \ 2. Предложите процедуру, не использующую стек, для инфиксного обхода бинарного дерева, заданного прошитым представлением. Оцените ее сложность

#### Тема 4. Задачи о путях на графе

домашнее задание, примерные вопросы:

Решение задач по изучаемой теме: 1. Как изменить алгоритм Уоршолла-Флойда, чтобы находить не только длины кратчайших путей, но и сами пути? 2.Сколько раз может меняться для одной вершины v значение D[v] в ходе работы алгоритма Дейкстры для графа с п вершинами. Привести пример на каждый возможный случай.

#### Тема 5. Потоки в сетях

домашнее задание, примерные вопросы:

## Тема 6. NP-полные задачи на графах

домашнее задание, примерные вопросы:



Решение задач по изучаемой теме: 1.Предложите алгоритм линейной сложности для нахождения максимального независимого множества вершин в неориентированном дереве. 2. Предложите сведение задачи ГАМ ЦИКЛ к задаче выполнимости булевых формул ВЫП

# Тема. Итоговая форма контроля

# Примерные вопросы к экзамену:

# ВОПРОСЫ К ЗАЧЕТУ

- 1. Графы: основные понятия и определения
- 2. Таблица смежности
- 3. Таблица инцидентности
- 4. Графы с ограниченной полустепенью исхода
- 5. Произвольные графы
- 6. Деревья: основные определения
- 7. Эквивалентные характеристики ориентированных и неориентированных деревьев
- 8. Представления деревьев
- 9. Деревья и выражения
- 10. Обходы деревьев
- 11. Алгоритм Крускала
- 12. Поиск в глубину и задача о лабиринте
- 13. Поиск в ширину
- 14. Двусвязные компоненты неориентированных графов
- 15.Базы ориентированного графа
- 16. Транзитивное замыкание графа
- 17. Алгоритм Уоршолла
- 18. алгоритм Уоршолла-Флойда
- 19. Алгоритм Дейкстры
- 20. Алгоритм Беллмана-Форда
- 21. Алгоритм Форда-Фалкерсона
- 22. Алгоритм построения максимального потока за кубическое время
- 23. Максимальные паросочетания в графах
- 24. Полиномиальная сводимость
- 25. NP-полные задачи
- 26. Цикл Гамильтона
- 27. Задача коммивояжера и ее свойства
- 28. Задача о раскраске вершин графа
- 29. Аппроксимации для задачи коммивояжера
- 30. Аппроксимация для задачи "Вершинное покрытие"

#### 7.1. Основная литература:

- 1.Харари Ф. Теория графов. Изд. 4 е. М.: [ЛИБРОКОМ], 2009. 300 с.
- 2.Альпин, Ю. А. Дискретная математика: графы и автоматы: учеб. пособие / Ю.А. Альпин, С.Н. Ильин; Казан. гос. ун-т.?Казань: [Казан. гос. ун-т], 2007.?77 с.
- 3.Ю.А. Альпин, С.Н. Ильин. Дискретная математика: графы и автоматы: учеб. Пособие. Казан. гос. ун т. Казань: [Казан. гос. ун т], 2007. 77 с.
- Электронная версия: http://libweb.ksu.ru/ebooks/publicat/0-761515.pdf
- 4. Дискретная математика: Учебное пособие / В.В. Куликов. М.: РИОР, 2007. 174 с.



http://znanium.com/bookread.php?book=126799

5. Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы, матроиды, алгоритмы. - СПб.:Лань, 2010. - 368 с. URL: http://e.lanbook.com/books/element.php?pl1\_id=536

# 7.2. Дополнительная литература:

1. Мальцев И.А. Дискретная математика. -СПб.:Лань, 2011. - 304 с.

ЭБС "Лань": http://e.lanbook.com/books/element.php?pl1\_id=638

2. Микони С.В. Дискретная математика для бакалавра: множества, отношения, функции, графы. -СПб.:Лань, 2012. - 192 с.

ЭБС "Лань": http://e.lanbook.com/books/element.php?pl1\_id=4316

3. Окулов С.М. Дискретная математика. Теория и практика решения задач по информатике. -

М.: БИНОМ, Лаборатория знаний, 2012. - 422 с.

ЭБС "Лань": http://e.lanbook.com/view/book/8734/

4. Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Полный курс. - М.: ФИЗМАТЛИТ, 2007. - 405 с.

ЭБС "Лань": http://e.lanbook.com/view/book/59461/

5. Редькин Н.П. Дискретная математика. - М.: ФИЗМАТЛИТ, 2009. - 264 с.

ЭБС "Лань": http://e.lanbook.com/view/book/2293/

# 7.3. Интернет-ресурсы:

Википедия - http://ru.wikipedia.org

Образовательный сайт по математике - http://www.exponenta.ru/

Портал математических интернет-ресурсов - http://www.math.ru/

Портал математических интернет-ресурсов - http://www.allmath.com/

Портал ресурсов по математике и алгоритмам - http://algolist.manual.ru/

#### 8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Теория конечных графов и ее приложения" предполагает использование следующего материально-технического обеспечения:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.



Лабораторные занятия по дисциплине проводятся в аудитории, оснащенной доской и мелом(маркером).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 02.03.02 "Фундаментальная информатика и информационные технологии" и профилю подготовки Системный анализ и информационные технологии.

Программа дисциплины "Теория конечных графов и ее приложения"; 02.03.02 Фундаментальная информатика и информационные технологии; доцент, к.н. (доцент) Нурмеев Н.Н.

| Автор(ы) | :           |  |
|----------|-------------|--|
| Нурмеев  | H.H         |  |
| " "      | 201 г.      |  |
|          | <del></del> |  |
| Рецензен | нт(ы):      |  |
| Пшеничн  | ый П.В      |  |
| " "      | 201 г.      |  |