МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования

"Казанский (Приволжский) федеральный университет" Институт вычислительной математики и информационных технологий

подписано электронно-цифровой подписью

Программа дисциплины

Модели управления производством Б1.В.ОД.2

Направление подготовки: 09.04.03 - Прикладная информатика
Профиль подготовки: Информационная безопасность экономических систем
Квалификация выпускника: <u>магистр</u>
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):
A66×

Абайдуллин Р.Н. Рецензент(ы): Тагиров Р.Р.

СОГЛАСОВАНО:			
Заведующий (ая) кафедрой: Латыпов Р. Протокол заседания кафедры No с		201г	
Учебно-методическая комиссия Инстит технологий:	ута вычисли	тельной математики и ин	формационных
Протокол заседания УМК No от "_		201г	
Регистрационный No 938117			
	Казань		
	2017		

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Абайдуллин Р.Н. кафедра системного анализа и информационных технологий отделение фундаментальной информатики и информационных технологий, Ravil.Abaydullin@kpfu.ru

1. Цели освоения дисциплины

Курс ориентирует студентов на изучение задач автоматизации производства, на использование SCADA- систем для реализации моделей управления производственными процессами.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.2 Дисциплины (модули)" основной образовательной программы 09.04.03 Прикладная информатика и относится к обязательным дисциплинам. Осваивается на 2 курсе, 3 семестр.

"Модели управления производством" входит в состав профессиональнывх дисциплин по выбору. Читается на 2 курсе, в 3 семестре

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-1 (общекультурные компетенции)	способностью к абстрактному мышлению, анализу, синтезу
ОК-3 (общекультурные компетенции)	готовностью к саморазвитию, самореализации, использованию творческого потенциала
ОПК-5 (профессиональные компетенции)	способностью на практике применять новые научные принципы и методы исследований
ОПК-6 (профессиональные компетенции)	способностью к профессиональной эксплуатации современного электронного оборудования в соответствии с целями основной образовательной программы магистратуры
ПК-1 (профессиональные компетенции)	способностью использовать и развивать методы научных исследований и инструментария в области проектирования и управления ИС в прикладных областях
ПК-2 (профессиональные компетенции)	способностью формализовывать задачи прикладной области, при решении которых возникает необходимость использования количественных и качественных оценок
ПК-8 (профессиональные компетенции)	способностью анализировать данные и оценивать требуемые знания для решения нестандартных задач с использованием математических методов и методов компьютерного моделирования
ПК-9 (профессиональные компетенции)	способностью анализировать и оптимизировать прикладные и информационные процессы

В результате освоения дисциплины студент:

1. должен знать:

навыки проектирования и моделирования производственных процессов;

2. должен уметь:

ставить задачи автоматизации производства и исследовать варианты проектов автоматизации;

3. должен владеть:

теоретическими знаниями о моделях и процессах моделирования;

4. должен демонстрировать способность и готовность:

ориентироваться в вопросах технологии производства;

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 5 зачетных(ые) единиц(ы) 180 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	лабораторные работы	-
1.	Тема 1. Статистика производства.	3		1	0	2	
2.	Тема 2. SCADA - системы.	3		1	0	2	
3.	Тема 3. Моделирование поточной линии.	3		1	0	2	
4.	Тема 4. Задача поддержания микроклимата.	3		1	0	2	Письменное домашнее задание
5.	Тема 5. Модель процесса обжига на кирпичном заводе	3		2	0	4	

N	Раздел Дисциплины/	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля		-	Лекции	Практические занятия	Лабораторные работы	
6.	Тема 6. Модель процесса гидрирования.	3		2	0	4	
7.	Тема 7. Моделирование химических систем.	3		2	0	4	Письменное домашнее задание
8.	Тема 8. Моделирование бинарной ректификации.	3		2	0	4	
9.	Тема 9. Оптимальное проектирование теплообменников.	3		2	0	4	
10.	Тема 10. Пример задачи на использование МРТ.	3		2	0	4	Письменное домашнее задание
11.	Тема 11. Пример задачи обработки спектров ЭПР.	3		2	0	4	Контрольная работа
	Тема . Итоговая форма контроля	3		0	0	0	Экзамен
	Итого			18	0	36	

4.2 Содержание дисциплины

Тема 1. Статистика производства.

лекционное занятие (1 часа(ов)):

Определение основных статистических показателей, характеризующих производство, и исследование из математических свойств.

лабораторная работа (2 часа(ов)):

Компьютерная реализация некоторой системы сбора производственной статистики.

Тема 2. SCADA - системы.

лекционное занятие (1 часа(ов)):

SCADA - системы. Их структура, задачи и принципы использования.

лабораторная работа (2 часа(ов)):

Исследование примера SCADA - системы.

Тема 3. Моделирование поточной линии.

лекционное занятие (1 часа(ов)):

Моделирование поточной линии. Исследование свойств модели как задачи массового обслуживания. Исследование модели с помощью имитационных моделей.

лабораторная работа (2 часа(ов)):

Компьютерная реализация имитационной модели поточной линии.

Тема 4. Задача поддержания микроклимата.

лекционное занятие (1 часа(ов)):

Задача поддержания микроклимата. Исследование математической модели задачи, выделение основных показателей для построения модели и ее основных свойств.

лабораторная работа (2 часа(ов)):

Компьютерная реализация решения задачи поддержания микроклимата.

Тема 5. Модель процесса обжига на кирпичном заводе

лекционное занятие (2 часа(ов)):

Модель процесса обжига на кирпичном заводе. Исследование математической модели задачи, выделение основных показателей для построения модели и ее основных свойств.

лабораторная работа (4 часа(ов)):

Компьютерная реализация модели процесса обжига на кирпичном заводе

Тема 6. Модель процесса гидрирования.

лекционное занятие (2 часа(ов)):

Модель процесса гидрирования. Исследование математической модели задачи, выделение основных показателей для построения модели и ее основных свойств.

лабораторная работа (4 часа(ов)):

Компьютерная реализация модели процесса гидрирования.

Тема 7. Моделирование химических систем.

лекционное занятие (2 часа(ов)):

Моделирование химических систем. Исследование математической модели задачи, выделение основных показателей для построения модели и ее основных свойств.

лабораторная работа (4 часа(ов)):

Компьютерная реализация модели химических систем.

Тема 8. Моделирование бинарной ректификации.

лекционное занятие (2 часа(ов)):

Моделирование бинарной ректификации. Исследование математической модели задачи, выделение основных показателей для построения модели и ее основных свойств.

лабораторная работа (4 часа(ов)):

Компьютерная реализация модели бинарной ректификации.

Тема 9. Оптимальное проектирование теплообменников.

лекционное занятие (2 часа(ов)):

Оптимальное проектирование теплообменников. Исследование математической модели задачи, выделение основных показателей для построения модели и ее основных свойств.

лабораторная работа (4 часа(ов)):

Компьютерная реализация задачи проектирования теплообменников.

Тема 10. Пример задачи на использование MPT.

лекционное занятие (2 часа(ов)):

Разбор примера задачи на использование МРТ.

лабораторная работа (4 часа(ов)):

Тестирование модели задачи на использование МРТ.

Тема 11. Пример задачи обработки спектров ЭПР.

лекционное занятие (2 часа(ов)):

Разбор примера задачи обработки спектров ЭПР.

лабораторная работа (4 часа(ов)):

Тестирование модели задачи обработки спектров ЭПР.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 4. Задача поддержания микроклимата.	3		подготовка домашнего задания	18	домашнее задание
7.	Тема 7. Моделирование химических систем.	3		подготовка домашнего задания	18	домашнее задание
	Тема 10. Пример задачи на использование МРТ.	3		подготовка домашнего задания	18	домашнее задание
	Тема 11. Пример задачи обработки спектров ЭПР.	3		подготовка к контрольной работе	50	контрольная работа
	Итого				90	

5. Образовательные технологии, включая интерактивные формы обучения

Обучение происходит в форме лабораторных занятий и самостоятельной работы студентов. Список литературы разделен на две категории: необходимый для сдачи экзамена минимум и дополнительная литература.

Изучение курса подразумевает не только овладение теоретическим материалом, но и получение практических навыков для более глубокого понимания разделов на основе решения задач и упражнений, иллюстрирующих доказываемые теоретические положения, а также развитие абстрактного мышления и способности самостоятельно доказывать утверждения. Самостоятельная работа предполагает выполнение домашних работ. Практические задания, выполненные в аудитории, предназначены для указания общих методов решения задач определенного типа. Закрепить навыки можно лишь в результате самостоятельной работы. Кроме того, самостоятельная работа включает подготовку к экзамену. При подготовке к сдаче экзамена весь объем работы рекомендуется распределять равномерно по дням, отведенным для подготовки к экзамену, контролировать каждый день выполнения работы. Лучше, если можно перевыполнить план. Тогда будет резерв времени.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

- Тема 1. Статистика производства.
- Тема 2. SCADA системы.
- **Тема 3. Моделирование поточной линии.**
- **Тема 4. Задача поддержания микроклимата.**

домашнее задание, примерные вопросы:

Обсуждение основных математических принципов построения моделей: оптимизационные модели, модели, основанные на дифференциальных и интегральных уравнениях. Оценка влияния вероятностной природы показателей моделей.

- Тема 5. Модель процесса обжига на кирпичном заводе
- Тема 6. Модель процесса гидрирования.
- **Тема 7. Моделирование химических систем.**

домашнее задание, примерные вопросы:

Обсуждение основных приемов исследования моделей процесса обжига кирпича, модели поддержания микроклимата, модели химических систем, модели процесса гидрирования.

Тема 8. Моделирование бинарной ректификации.

Тема 9. Оптимальное проектирование теплообменников.

Тема 10. Пример задачи на использование MPT.

домашнее задание, примерные вопросы:

Обсуждение основных приемов исследования модели бинарной ректификации, модели проектирования теплообменников, модели обработки спектров.

Тема 11. Пример задачи обработки спектров ЭПР.

контрольная работа, примерные вопросы:

Программная реализация одной из рассмотренных моделей управления производством и приведение исследования модели.

Тема . Итоговая форма контроля

Примерные вопросы к экзамену:

БИЛЕТЫ К ЭКЗАМЕНАМ

- 1. Модели и процесс моделирования.
- 2. Алгоритм управления поддержанием микроклимата.
- 1. Постановка задачи поддержания микроклимата.
- 2. Модель производственной поточной линии.
- 1. Описание процесса производства кирпича.
- 2. Модель производственной линии с пунктами технического кон-троля и настройки.
- 1. Варианты граничных условий уравнения распространения тепла применительно процессам сушки и обжига.
- 2. Практическое значение результата моделирования процесса гидрирования.
- 1. Вывод упрощенного уравнения для случая стержня.
- 2. Методика решения прямой задачи кинетики.
- 1. Описание процесса гидрирования.
- 2. Аналитическое представление решений упрощенного уравнения для вычисления распределения температуры.
- 1. Вывод уравнений концентрации газа в сплошной и дисперсных фазах.
- 2. Оптимальное проектирование теплообменных аппаратов.
- 1. Стехиометрический анализ системы реакций.
- 2. Системы, ориентированные на моделирование и непосредственное управление производством.
- 1. Модели и управление процессом безреактивного расщепления жиров.
- 2. Методика решения обратной задачи кинетики.
- 1. Моделирование бинарной ректификации в тарельчатой колонне.
- 2. Оптимизация каскада биохимических реакторов.
- 1. Описание процесса производства спирта на многоколонной установке.
- 2. Модель производственной поточной линии.
- 1. Моделирование в среде Genie.
- 2. Алгоритм управления поддержанием микроклимата.

7.1. Основная литература:

- 1. Методы, модели и алгоритмы в автоматизированной подготовке и оперативном управлении производством РЭС: [Электронный ресурс] Монография / М.В. Головицына. М.: НИЦ ИНФРА-М, 2013. 277 с. . Режим доступа: http://www.znanium.com/bookread.php?book=368405
- 2. Материалы и технологические процессы машиностроительных производств[Электронный ресурс] / Е.А.Кудряшов, С.Г.Емельянов, Е.И.Яцун, Е.В.Павлов. М.: Альфа-М: НИЦ Инфра-М, 2012. 256 с. . Режим доступа: http://www.znanium.com/bookread.php?book=336645
- 3. Проектирование автоматизированных систем производства[Электронный ресурс]: Учебное пособие / В.Л. Конюх. М.: КУРС: НИЦ ИНФРА-М, 2014. 312 с. . Режим доступа: http://www.znanium.com/bookread.php?book=449810

7.2. Дополнительная литература:

- 1. Бабина О.И. Имитационное моделирование процессов планирования на промышленном предприятии [Электронный ресурс] : монография / О.И. Бабина, Л.И. Мошкович. Красноярск: Сиб. федер. ун-т, 2014. 152 с. URL: http://znanium.com/bookread2.php?book=506049
- 2. Моделирование систем и процессов: Учебное пособие / Н.Г. Чикуров. М.: ИЦ РИОР: НИЦ Инфра-М, 2013. 398 с. URL:http://znanium.com/bookread2.php?book=392652
- 3. Моделирование управленческих решений в сфере экономики в условиях неопределенности: Монография М.: НИЦ ИНФРА-М, 2015. 299 с. URL: http://znanium.com/bookread2.php?book=480352

7.3. Интернет-ресурсы:

Википедия - http://ru.wikipedia.org
Интернет-портал образовательных ресурсов по ИТ - http://www.intuit.ru
Интернет--портал ресурсов по математическим наукам - http://www.allmath.com/
Интернет--портал ресурсов по математическим наукам - http://www.math.ru/
Электронная библиотека по техническим наукам - http://techlibrary.ru

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Модели управления производством" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb). конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

- 1. SCADA система (минимально: Advantech Genie, версия 3.04)
- Micrsft Office.
- 3. Электронное пособие (каталог с дистрибутивами и информационными материалами)
- 4. Файл Genie_rus.pdf с подробным описанием SCADA системы Genie.

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 09.04.03 "Прикладная информатика" и магистерской программе Информационная безопасность экономических систем .

Автор(ы):		
Абайдулл	ин Р.Н	
"_"_	201 г.	
Рецензен	т(ы):	
Тагиров F	P.P.	
" "	201 г.	