МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" Химический институт им. А.М. Бутлерова

y	T	В	E	P	K	()	Ц,	Δ	۱ŀ	C)	

Программа дисциплины

Катализ в нанотехнологиях Б1.В.ОД.10

Направление подготовки: <u>04.04.01 - Химия</u> Профиль подготовки: <u>Нефтехимия и катализ</u>

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2016

Автор(ы): Верещагина Я.А. **Рецензент(ы):** Соломонов Б.Н.

СОГЛАСОВАНО:

Заведующий(ая) кафедрой: Со		5. H.		
Протокол заседания кафедры	No от	""	20г.	
Учебно-методическая комисси:	я Химичес	кого инсти	тута им. А.М. Бутлеро	ва
Протокол заседания УМК No _	от "	"	20г.	

Казань 2017

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине/ модулю
- 4.2. Содержание дисциплины
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 6.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения
- 6.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 6.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций
- 7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
- 7.1. Основная литература
- 7.2. Дополнительная литература
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

Программу дисциплины разработал(а)(и) профессор, д.н. (профессор) Верещагина Я.А. (Кафедра физической химии, Химический институт им. А.М. Бутлерова), Jana. Vereschagina@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Выпускник, освоивший дисциплину, должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции
OK-3	готовностью к саморазвитию, самореализации, использованию творческого потенциала
ПК-2	владением теорией и навыками практической работы в избранной области химии
ОПК-1	способностью использовать и развивать теоретические основы традиционных и новых разделов химии при решении профессиональных задач

Выпускник, освоивший дисциплину:

4. должен демонстрировать способность и готовность:

понимать принципы действия наноразмерных катализаторов, представлять возможности и перспективы применения нанокатализа и связанных с ними явлений

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования

Данная учебная дисциплина включена в раздел "Б1.В.ОД.10 Дисциплины (модули)" основной профессиональной образовательной программы 04.04.01 "Химия (Нефтехимия и катализ)" и относится к обязательным дисциплинам. Осваивается на 1 курсе, в 2 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы), 72 часа(ов).

Контактная работа - 20 часа(ов), в том числе лекции - 20 часа(ов), практические занятия - 0 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 52 часа (ов).

Контроль (зачёт / экзамен) - 0 часа(ов).

Форма промежуточного контроля дисциплины: зачет во 2 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине/ модулю

N	Раздел дисциплины/	Семестр		Виды и ча контактной ра их трудоемк (в часах	Самостоятельная работа	
	модуля		Лекции	Практические занятия	лабораторные работы	_
1.	Тема 1. Введение. Нанонаука и нанотехнология	2	2	0	0	4
2.	Тема 2. Классификация нанообъектов	2	2	0	0	6
3.	Тема 3. Поверхность твердых тел	2	2	0	0	6
4.	Тема 4. Роль катализа в нанохимии и нанотехнологии	2	2	0	0	6
5.	Тема 5. Методы исследования нанокаталитических систем	2	2	0	0	6
6.	Тема 6. Гомогенный нанокатализ	2	2	0	0	6
7.	Тема 7. Гетерогенный нанокатализ	2	2	0	0	4
8.	Тема 8. Обзор нанокаталитических процессов	2	2	0	0	4
9.	Тема 9. Биокатализ и нанотехнологии	2	2	0	0	6
	Тема 10. Возможности и перспективы развития и применения нанокатализа	2	2	0	0	4
	Итого		20	0	0	52

4.2 Содержание дисциплины

Тема 1. Введение. Нанонаука и нанотехнология

Введение. Нанонаука и нанотехнология. Основные понятия и термины нанонауки, нанохимии и нанотехнологии. Нано означает одну миллиардную (10-9) часть чего-либо. Нанотехнология ? относительно новое слово, однако структуры и устройства нанометровых размеров не новы и существуют на Земле столько же, сколько существует сама жизнь. Впервые термин ?нанотехнология? употребил Норио Танигути в 1974 г., назвав так производство изделий размером порядка нанометров. Базисом индустрии наносистем являются новые, ранее не известные свойства и функциональные возможности материальных систем при переходе к наномасштабам, определяемых особенностями процессов переноса и распределения зарядов, энергии, массы и информации при наноструктурировании, то есть при переходе к объектам, представляющим собой интеграцию искусственно или естественно упорядоченных наносистем.

Наносистема 🛘 материальный объект в виде упорядоченных или самоупорядоченных, связанных между собой элементов с нанометрическими характеристическими размерами, кооперация которых обеспечивает возникновение у объекта новых свойств, проявляющихся в виде квантово-размерных, синергетически-кооперативных, ?гигантских? эффектов и других явлений и процессов, связанных с проявлением наномасштабных факторов. Наноматериалы 🛘 вещества и композиции веществ, представляющие собой искусственно или естественно упорядоченную или неупорядоченную систему базовых элементов с нанометрическими характеристическими размерами и особым проявлением физического и (или) химического взаимодействий при кооперации наноразмерных элементов. Нанотехнология 🛘 совокупность методов и способов синтеза, сборки, структуро- и формообразования, нанесения, удаления и модифицирования материалов, включая систему знаний, навыков, умений, аппаратурное, материаловедческое, метрологическое, информационное обеспечение процессов и технологических операций, направленных на создание материалов и систем с новыми свойствами, обусловленными проявлением наномасштабных факторов. Нанодиагностика 🛚 совокупность специализированных методов исследований, направленных на изучение структурных, морфолого-топологических, механических, электрофизических, оптических, биологических характеристик наноматериалов и наносистем, анализ наноколичеств вещества, измерение метрических параметров с наноточностью. Нанонаука ? система знаний, основанная на описании, объяснении и предсказании свойств материальных объектов с нанометрическими характеристическими размерами или систем более высокого метрического уровня, упорядоченных или самоупорядоченных на основе наноразмерных элементов. Нанотехника ? машины, механизмы, приборы, устройства, материалы, созданные с использованием новых свойств и функциональных возможностей систем при переходе к наномасштабам и обладающие ранее недостижимыми массогабаритными и энергетическими показателями, технико-экономически-ми параметрами и функциональными возможностями.

Тема 2. Классификация нанообъектов

Классификация нанообъектов: нанокластеры, наночастицы, наноструктуры. Свойства веществ в наноразмерном состоянии. Размерные эффекты.

Наночастица? агрегат атомов с размерами от 5 до 100 нм (103-108 атомов), рассматриваемый как часть объемного материала. Кластер? сложное объединение нескольких атомов или молекул, размером 1-5 нм (до 104 атомов). Атомные кластеры можно условно классифицировать на основании их размеров и связи между размерами частицы и количеством составляющих ее атомов. Наноструктуры? наночастицы, имеющие сложную форму и строение. Нанообъекты классифицируют по линейным размерам: 0D: свободные и стабилизированные нанокластеры, фуллерены, квантовые точки; 1D: наностержни, нанонити, нанотрубки, наноленты, вискеры; 2D: тонкие пленки, гетероструктуры, пленки Лэнгмюра-Блоджетт, нанопластины, адсорбционные и самособирающиеся монослои, а также двухмерные массивы объектов в нанометровом диапазоне; 3D: наночастицы и наночастицы в оболочке, нанокомпозиты и самоорганизующиеся массивы нанообъектов. Нанокластеры можно разделить на молекулярные, газовые безлигандные, коллоидные, матричные и твердотельные.

Методы синтеза кластеров включают прежде всего конденсацию из газовой фазы: создание пересыщенного пара с последующим осаждением. Образование пара: термическое испарение; ионное, плазменное или магнетронное распыление; лазерная абляция; испарение взрывом и т.д. Устойчивость кластеров характеризуется набором магических чисел. Структура и размер нанообъектов определяют их свойства ? электронные, магнитные, оптические, реакционную способность и другие.

Тема 3. Поверхность твердых тел

Поверхность твердых тел. Поверхностные явления. Поверхность монокристаллов, нанокластеров и пористых сорбентов. Примесные атомы. Поверхность металлов и оксидов металлов, электронные и магнитные свойства.

Науку о поверхностных явлениях можно определить как область, изучающую природу поверхности, т.е. ее физическую и электронную структуру, а также взаимодействия между молекулами в газовой фазе и поверхностью.

Этапы развития и ключевые фигуры: 1937 г. Дэвиссон, Томсон (дифракция электронов на кристалле), Нобелевская премия по физике; работа в условиях сверхвысокого вакуума. 1930-1950 гг. Мюллер (изобретение эмиссионного и ионного микроскопов).

С середины 1960-х активно изучаются поверхности с известной морфологией. В 1970-1980 гг. на основе изучения каталитических процессов в различных системах формируются следующие важные идеи: связь структуры поверхности катализатора и реакционной способности; роль прекурсоров; роль перестройки (реорганизации) поверхности катализатора (Эртль, Соморджай, Кинг). 2007 г. Герхард Эртль (Германия) Нобелевская премия по химии за изучение гетерогенно-каталитических процессов.

Исследования в области поверхностных явлений стали основой для нанонауки благодаря развитию техники, возникновению новых идей, и выяснению ключевой роли, которую играют наноразмерные явления в важных поверхностных процессах. Следует помнить, что чем глубже мы погружаемся в наномир, тем больше увеличивается поверхность материала, и тем значительнее становятся свойства поверхностного слоя.

Тема 4. Роль катализа в нанохимии и нанотехнологии

Роль катализа в нанохимии и нанотехнологии. Катализ в процессах получения нанообъектов. Наноструктурированные катализаторы. Типы нанокаталитических систем, их характерные особенности.

Основные роли катализа в нанонауке: получение наноструктур; наноструктуры как катализаторы. Революция, происходящая в настоящее время в нанонауке, обусловлена сопутствующими достижениями в технологии. Во-первых, появилась возможность получения все меньших и меньших структур; во-вторых, происходит постоянное увеличение точности приготовления таких структур.

Основные характеристики наноразмерных катализаторов: большая площадь поверхности, высокая каталитическая активность, адсорбирующая способность, склонность к агломерации, химическое разнообразие, разнообразное происхождение и применение. Основные типы: углеродные (углерод, уголь, графит, углеродные нанотрубки, графен, фуллерены, неорганические нанотрубки), металлы и оксиды (алюминий, серебро, золото, платина, палладий, кобальт, диоксиды титана и кремния, оксиды цинка, алюминия, железа, церия), глины, квантовые точки и другие. Зависимость свойств нанокатализаторов от их размеров в большой степени определяют преимущества их использования в катализе.

Тема 5. Методы исследования нанокаталитических систем

Методы исследования нанокаталитических систем.

Ключевым фактором развития нанонауки явилось усовершенствование старых и создание новых инструментальных средств для определения параметров наноструктур. Для понимания свойств наноматериалов надо, прежде всего, знать их атомарную структуру. Кристаллографические методы исследования (рентгеноструктурный анализ, порошковая дифрактография). Определение размеров частиц? масс-спектрометрические методы.

Методы микроскопии: просвечивающая электронная микроскопия, ионно-полевая микроскопия, сканирующая микроскопия. Сканирующая микроскопия. Просвечивающая электронная микроскопия. Устройство сканирующего туннельного микроскопа, принцип действия которого основан на туннельном эффекте. Атомно-силовой микроскоп, режимы работы. Все виды сканирующей микроскопии предоставляют исследователю информацию о топографии и дефектах структуры поверхности с разрешением, близким к атомному. Анализ морфологии структур и манипуляция атомами.

Спектроскопические методы в анализе наноразмерных катализаторов: инфракрасная и рамановская спектроскопия, фотоэмиссионная и рентгеновская спектроскопия, магнитный резонанс.

Тема 6. Гомогенный нанокатализ

Гомогенный нанокатализ. Коллоидные кластеры и наноструктуры. Коллоидные наночастицы переходных металлов как квазигомогенные нанокаталитические системы.

Проблемы использования металлических наночастиц в катализе связаны с нерастворимостью, склонностью к слипанию и агломерации. Наночастицы металлов обычно нерастворимы в неорганических и органических растворителях, но в коллоидной форме они могут проявлять большую каталитическую активность. Металлические частицы стабилизируют в виде коллоидов при помощи поверхностно-активных веществ.

Методы синтеза включают химические методы (потенциально крупномасштабные), золь-гель метод, преципитацию, химическое осаждение и другие. Для предотвращения слипания наночастиц вводят так называемые защитные лиганды или поверхностно-активные вещества. Стабилизированные коллоидные наночастицы разнообразных металлов могут рассматриваться как квазигомогенные каталитические системы в различных процессах. Катализ на основе супрамолекулярных и макромолекулярных систем (краун-эфиры, криптанды, каликсарены, поданды, порфирины, дендримеры и комплексы на их основе).

Тема 7. Гетерогенный нанокатализ

Гетерогенный нанокатализ. Типы гетерогенных нанокаталитических систем, методы получения и свойства. Углеродные наноструктуры (графен, углеродные нанотрубки, фуллерены). Неорганические нанотрубки. Наночастицы и нанокластеры металлов и оксидов металлов. Полупроводниковые наночастицы.

Углеродные наноструктуры благодаря своим уникальным свойствам могут широко использоваться в каталитических процессах. На основе аллотропов углерода разработано множество современных материалов ? конструкционных, инструментальных, теплозащитных, полимерных и др. Графен ? 2D плоская наноструктура. Фуллерены (бакиболы) -0D наноструктуры, аналоги полиароматических систем, могут образовывать эндо-, экзо-структуры и соединения замещения; наличие полости позволяет использовать их в качестве капсул и переносчиков различных частиц, полярных и неполярных фрагментов.

Углеродные нанотрубки (УНТ) ? наиболее интересный представитель с точки зрения использования в катализе. Они представляют собой 1D проволоки молекулярного размера с хорошо развитой и однородной атомной поверхностью и обладают удивительными механическими и электронными свойствами. УНТ могут обладать свойствами металлов или полупроводников в зависимости от их структуры. Широко используются как катализаторы и в качестве носителей и подложек для нанокатализаторов. Модификация поверхности УНТ увеличивает их каталитическу активность. Известны процессы, протекающие в цилиндрической полости нанотрубок.

Неорганические нановолокна представляют собой другой уникальный класс 1D-размерных наноматериалов, обладающих особыми химическими, физическими и механическими свойствами. Такие нановолокна являются кристаллическими цилиндрическими материалами, служат модельными системами для понимания основных явлений в одномерном пространстве.

Металлические нанокатализаторы. Главенствующая роль размерных эффектов в изменении основных характеристик нанокаталитических частиц? активности, селективности, стабильности. Выявление роли размеров нанокластеров на примере процесса десульфуризации сырой нефти с участием сульфида молибдена, нанесенного на золотую подложку. Разработка модельных наночастиц и выявление основных закономерностей протекания нанокаталитических процессов позволяют создавать новое поколение катализаторов.

В нанометровом диапазоне можно подготовить объемные материалы с мелкими пустотами, например, цеолиты, силикаты, глиноземы. Важной особенностью столбчатых глин является наличие кислотных центров Льюиса или Бренстеда, где и происходит реакция. Такие катализаторы изучались в процессах крекинга (например, получение бензина крекингом нефти). Одним из недостатков способа является склонность глин к коксованию.

Важнейшие условия синтеза наночастиц: неравновесность систем, высокая химическая однородность, монодисперсность. Методы получения наночастиц: подходы ?сверху-вниз? и ?снизу-вверх?. Физические и химические методы получения: газофазный синтез, химическое осаждение, золь-гель метод, механическое измельчение и др.

Тема 8. Обзор нанокаталитических процессов

Обзор нанокаталитических процессов. Дегидрирование бутана до бутена и бутадиена. Окисление оксида углерода. Окисление кобальта. Окисление пропилена. Гидродесульфирование нефтепродуктов. Примеры:

Переработка биомассы в биотопливо (катализатор: NiO на подложке из γ-Al2O3).

Биодизель из отработанного кулинарного масла (катализатор: нанотрубки состава (Al0.9H0.3PW12O40)

?Зеленое? производство дизельного топлива по Фишеру-Тропшу (катализатор: нанопорошки Fe и Co, промотированные Mn, Cu, щелочными металлами.

Каталитическое сжигание авиатоплива (катализатор: кластеры Pd, защищеннные монослоем гексантиола).

Риформинг этанола до водорода (катализатор: мезопористый In2O3 на кремниевом темплате) и др.

Тема 9. Биокатализ и нанотехнологии

Биокатализ и нанотехнологии. Биологические нанообъекты. Белки, нуклеиновые кислоты, полипептиды: строение, свойства, биологические функции. Биополимеры. Ферментативный катализ. Ферменты: строение и свойства, активный центр ферментов.

Нанобиотехнология - область науки на стыке биологии и нанотехнологии, которая охватывает широкий круг технологических подходов, включая: применение нанотехнологических устройств и наноматериалов в биотехнологии; использование биологических молекул для нанотехнологических целей; создание биотехнологических продуктов, свойства которых определяются размерными характеристиками в дипазоне 1-100 нм; использование биотехнологических подходов, в основе которых лежит принцип контролируемой самоорганизации наноструктур.

Биологические нанообъекты: вирусы ? 10-200 нм, верхний диапазон наночастиц; белки ? 4-50 нм, нижний диапазон наночастиц; аминокислоты ? около 1 нм, можно уподобить нанопроволоке; ДНК ? двойная наноцепь.

Биополимеры являются структурной основой живых организмов и обеспечивают их жизнедеятельность, выполняя разнообразные биологические функции. К биополимерам относятся белки, нуклеиновые кислоты, полисахариды. Существуют также смешанные биополимеры, например, гликопротеины (и липопротеины. Ввиду своего размера и уникальных свойств биополимеры используются для создания биомиметических наноматериалов. Биомиметика? создание устройств, приборов, механизмов или технологий, идея и основные элементы которых заимствуются из живой природы.

Ферменты - белковые молекулы, реже молекулы РНК или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах: ими катализируется около 4000 реакций. По типу и механизму действия ферменты подразделяются на оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность. Специфичность и активность ферментов определяются их трехмерной структурой и достигаются частичной комплементарностью распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. При этом эффективность ферментов значительно выше эффективности небелковых катализаторов: ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы? в сотни и тысячи раз. Ферменты широко используются в пищевой и текстильной промышленности, в фармакологии и биотехнологии. Многие ферменты промышленного назначения производятся биотехнологически.

Нанофармакология. Идея применения наночастиц для повышения эффективности воздействия фармакологических средств диагностики и терапии основана на том факте, что вещества в наноформе имеют свойства, отличные от свойств веществ в макродисперсной форме. В частности, высокая удельная поверхность наноматериалов приводит к тому, что поверхностные явления (адсорбция?десорбция, адгезия) начинают играть преобладающую роль в процессах их взаимодействия с макромолекулами и биологическими объектами. Следствием этого является то, что даже невысокие концентрации наночастиц, не оказывающие значительного токсического эффекта, могут производить значительное воздействие на живые организмы. Систематическое изучение закономерностей действия лекарственных веществ в наноформе позволит определить как их терапевтический потенциал, так и возможные риски для здоровья человека.

Тема 10. Возможности и перспективы развития и применения нанокатализа

Возможности и перспективы развития и применения нанокатализа обусловлены развитием нанонауки и нанотехнологии в целом.

Прогнозы развития нанотехнологии включают:

Краткосрочная перспектива - Изготовление инструментов и некоторых новых материалов (порошки, композиты) на основе нанотехнологий. Некоторые компании организовали такие производства и уже становятся доходными. Производство одномерных химических и биологических датчиков, портативных медицинских и диагностических устройств. Начало производства микроэлектромеханических устройств.

Среднесрочная перспектива - Начало производства двухмерных наноэлектронных устройств (запоминающие устройства, дисплеи, солнечные батареи). Появление иерархически структурированных наноматериалов и освоение самосборки биомолекул в нанотехнологических процессах. ■ Эффективное использование наноустройств для аккумулирования и преобразования энергии. Развитие методов пассивной доставки лекарств в организме и диагностики. Производство имплантируемых медицинских нано устройств.

Далекая перспектива - Развитие трехмерной наноэлектроники. Развитие наномедицины. Разработка искусственных хромосом. Использование квантовых компьютеров для расчета характеристик молекул и других нанообъектов. Начало массового производства нанотоваров.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года N301).

Письмо Министерства образования Российской Федерации N14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Положение от 24 декабря 2015 г. ♦ 0.1.1.67-06/265/15 "О порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Положение N 0.1.1.67-06/241/15 от 14 декабря 2015 г. "О формировании фонда оценочных средств для проведения текущей, промежуточной и итоговой аттестации обучающихся федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Положение N 0.1.1.56-06/54/11 от 26 октября 2011 г. "Об электронных образовательных ресурсах федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/66/16 от 30 марта 2016 г. "Разработки, регистрации, подготовки к использованию в учебном процессе и удаления электронных образовательных ресурсов в системе электронного обучения федерального государственного автономного образовательного учреждения высшего образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/11/16 от 25 января 2016 г. "О балльно-рейтинговой системе оценки знаний обучающихся в федеральном государственном автономном образовательном учреждении высшего образования "Казанский (Приволжский) федеральный университет""

Регламент N 0.1.1.67-06/91/13 от 21 июня 2013 г. "О порядке разработки и выпуска учебных изданий в федеральном государственном автономном образовательном учреждении высшего профессионального образования "Казанский (Приволжский) федеральный университет""

6. Фонд оценочных средств по дисциплине (модулю)

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы и форм контроля их освоения

Этап	Форма контроля	Оцениваемые компетенции	Темы (разделы) дисциплины			
Семе	Семестр 2					
	Текущий контроль					

Этап	ап Форма контроля Оцениваемые компетенции		Темы (разделы) дисциплины
1	Устный опрос	ПК-2 , ОПК-1 , ОК-3	1. Введение. Нанонаука и нанотехнология 2. Классификация нанообъектов 3. Поверхность твердых тел 4. Роль катализа в нанохимии и нанотехнологии 5. Методы исследования нанокаталитических систем 6. Гомогенный нанокатализ 7. Гетерогенный нанокатализ 8. Обзор нанокаталитических процессов 10. Возможности и перспективы развития и применения нанокатализа
2	Контрольная работа ПК-2, ОПК-1, ОК-3		9. Биокатализ и нанотехнологии
	Зачет	ОК-3, ОПК-1, ПК-2	

6.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Этап	Форма контроля	Критерии оценивания						
		Отлично	Хорошо	Удовл.	Неуд.			
Семес	тр 2	•		•				
Текуц	ций контроль							
1	Устный опрос	В ответе качественно раскрыто содержание темы. Ответ хорошо структурирован. Прекрасно освоен понятийный аппарат. Продемонстрирован высокий уровень понимания материала. Превосходное умение формулировать свои мысли, обсуждать дискуссионные положения.	Основные вопросы темы раскрыты. Структура ответа в целом адекватна теме. Хорошо освоен понятийный аппарат. Продемонстрирован хороший уровень понимания материала. Хорошее умение формулировать свои мысли, обсуждать дискуссионные положения.	освоен частично. Понимание отдельных положений из материала по теме.	Тема не раскрыта. Понятийный аппарат освоен неудовлетворительно. Понимание материала фрагментарное или отсутствует. Неумение формулировать свои мысли, обсуждать дискуссионные положения.			
2	Контрольная работа	Правильно выполнены все задания. Продемонстрирован высокий уровень владения материалом. Проявлены превосходные способности применять знания и умения к выполнению конкретных заданий.	Правильно выполнена большая часть заданий. Присутствуют незначительные ошибки. Продемонстрирован хороший уровень владения материалом. Проявлены средние способности применять знания и умения к выполнению конкретных заданий.	Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности	Задания выполнены менее чем наполовину. Продемонстрирован неудовлетворительный уровень владения материалом. Проявлены недостаточные способности применять знания и умения к выполнению конкретных заданий.			
		Зачтено	потпротпых вадания	Не зачтено				
	Зачет	Обучающийся обнаруж учебно-программного м необходимом для далы предстоящей работы псправился с выполнени предусмотренных прог	натериала в объеме, нейшей учебы и о специальности, нем заданий,	Обучающийся обнаружил значительные пробелы в знаниях основного учебно-программного материала, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение или приступить по окончании университета к профессиональной деятельности без дополнительных занятий по соответствующей дисциплине.				

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Семестр 2

Текущий контроль

1. Устный опрос

Тема 1, 2, 3, 4, 5, 6, 7, 8, 10

Основные понятия и термины нанонауки и нанохимии. Классификация нанообъектов:

нанокластеры, наночастицы, наноструктуры.

Размерные эффекты. Поверхностные явления. Явления адсорбции.

Катализ в процессах получения нанообъектов. Типы нанокаталитических систем

Катализ в процессах получения нанообъектов. Типы нанокаталитических систем

Методы исследования нанокаталитических систем. Гомогенный нанокатализ. Гетерогенный

нанокатализ. Углеродные наноструктуры как катализаторы. Наночастицы металлов и оксидов металлов как катализаторы. Полупроводниковые наночастицы как катализаторы.

Нанесенные нанокатализаторы. Ферментативный катализ. Ферменты. Примеры нанокаталитических процессов. Возможности и перспективы развития и применения нанокатализа.

2. Контрольная работа

Тема 9

Нанесенные нанокатализаторы. Примеры нанокаталитических процессов. Ферментативный катализ. Ферменты.

Зачет

Вопросы к зачету

- 1. Основные понятия и термины нанонауки и нанохимии.
- 2. Классификация нанообъектов: нанокластеры, наночастицы, наноструктуры.
- 3. Размерные эффекты.
- 4. Поверхностные явления. Явления адсорбции.
- 5. Катализ в процессах получения нанообъектов.
- 6. Типы нанокаталитических систем.
- 7. Методы исследования нанокаталитических систем.
- 8. Гомогенный нанокатализ.
- 9. Гетерогенный нанокатализ.
- 10. Углеродные наноструктуры как катализаторы.
- 11. Наночастицы металлов и оксидов металлов как катализаторы.
- 12. Полупроводниковые наночастицы как катализаторы.
- 13. Нанесенные нанокатализаторы.
- 14. Примеры нанокаталитических процессов.
- 15. Ферментативный катализ.
- 16. Ферменты.
- 17. Применение ферментатвных катализаторов.
- 18. Возможности и перспективы развития и применения нанокатализа

Билет 1

- 1. Основные понятия и термины нанонауки и нанохимии.
- 2. Классификация нанообъектов: нанокластеры, наночастицы, наноструктуры.

Билет 2

- 1. Размерные эффекты.
- 2. Поверхностные явления. Явления адсорбции.

Билет 3

- 1. Катализ в процессах получения нанообъектов.
- 2. Типы нанокаталитических систем.

Билет 4

- 1. Методы исследования нанокаталитических систем.
- 2. Гомогенный нанокатализ.

Билет 5

- 1. Гетерогенный нанокатализ.
- 2. Углеродные наноструктуры как катализаторы.

Билет 6

- 1. Наночастицы металлов и оксидов металлов как катализаторы.
- 2. Полупроводниковые наночастицы как катализаторы.

Билет 7

- 1. Нанесенные нанокатализаторы.
- 2. Примеры нанокаталитических процессов.

Билет 8

- 1. Ферментативный катализ.
- 2. Ферменты.
- Билет 9

- 1. Применение ферментатвных катализаторов.
- 2. Возможности и перспективы развития и применения нанокатализа

6.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В КФУ действует балльно-рейтинговая система оценки знаний обучающихся. Суммарно по дисциплине (модулю) можно получить максимум 100 баллов за семестр, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов.

Для зачёта:

56 баллов и более - "зачтено".

55 баллов и менее - "не зачтено".

Для экзамена:

86 баллов и более - "отлично".

71-85 баллов - "хорошо".

56-70 баллов - "удовлетворительно".

55 баллов и менее - "неудовлетворительно".

Этап	Форма контроля	Процедура оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	Количество баллов
Семе	стр 2		
Теку	щий контроль		
1	Устный опрос	Устный опрос проводится на практических занятиях. Обучающиеся выступают с докладами, сообщениями, дополнениями, участвуют в дискуссии, отвечают на вопросы преподавателя. Оценивается уровень домашней подготовки по теме, способность системно и логично излагать материал, анализировать, формулировать собственную позицию, отвечать на дополнительные вопросы.	30
2	Контрольная работа	Контрольная работа проводится в часы аудиторной работы. Обучающиеся получают задания для проверки усвоения пройденного материала. Работа выполняется в письменном виде и сдаётся преподавателю. Оцениваются владение материалом по теме работы, аналитические способности, владение методами, умения и навыки, необходимые для выполнения заданий.	20
			Всего 50
	Зачет	Зачёт нацелен на комплексную проверку освоения дисциплины. Обучающийся получает вопрос (вопросы) либо задание (задания) и время на подготовку. Зачёт проводится в устной, письменной или компьютерной форме. Оценивается владение материалом, его системное освоение, способность применять нужные знания, навыки и умения при анализе проблемных ситуаций и решении практических заданий.	50

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1 Основная литература:

- 1. Суздалев, Игорь Петрович. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов / И. П. Суздалев. Москва: URSS: [ЛИБРОКОМ, 2013]. 589 с.
- 2. Головин Ю.И. Основы нанотехнологий. [Электронный ресурс]. М.: Машиностроение, 2012. 656 с. Режим доступа:http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=5793

7.2. Дополнительная литература:

- 1. Кобаяси Н. Введение в нанотехнологию М.: Бином, 2007.
- 2. Сергеев Г.Б. Нанохимия. М.: Книжный Дом Университет, 2009.
- 3. Елисеев, А.А. Функциональные наноматериалы: учебное пособие для студентов старших курсов, обучающихся по специальности 020101 (011000) Химия / А.А. Елисеев, А.В. Лукашин; под ред. акад. Ю.Д. Третьякова. М.: Физматлит, 2010. 452 с.:
- 4. Еремин, В.В. Основы физической химии. Теория: в 2 частях [Электронный ресурс] : учебное пособие / В.В. Еремин, С.И. Каргов, И.А. Успенская. Электрон. дан. М.: 'Лаборатория знаний' (ранее 'БИНОМ. Лаборатория знаний'), 2013. 590 с.

Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=66369.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

Кинетика и катализ, периодический журнал - http://elibrary.ru/contents.asp?issueid=712147 Наноматериалы, наноструктуры, нанотехнологии - http://e.lanbook.com/view/book/2173/page2/основы катализа - http://e.lanbook.com/view/book/4312/page431/основы нанотехнологии - http://e.lanbook.com/view/book/5793/page1/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Разбор конкретных ситуаций, основанных на практических примерах; использование компьютерных симуляций

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Освоение дисциплины "Катализ в нанотехнологиях" предполагает использование следующего программного обеспечения и информационно-справочных систем:

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "БиблиоРоссика", доступ к которой предоставлен обучающимся. В ЭБС "БиблиоРоссика" представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Освоение дисциплины "Катализ в нанотехнологиях" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Специализированная лаборатория оснащена оборудованием, необходимым для проведения лабораторных работ, практических занятий и самостоятельной работы по отдельным дисциплинам, а также практик и научно-исследовательской работы обучающихся. Лаборатория рассчитана на одновременную работу обучающихся академической группы либо подгруппы. Занятия проводятся под руководством сотрудника университета, контролирующего выполнение видов учебной работы и соблюдение правил техники безопасности. Качественный и количественный состав оборудования и расходных материалов определяется спецификой образовательных программ.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий:
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 04.04.01 "Химия" и магистерской программе Нефтехимия и катализ .

