МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

УТВЕРЖДАЮ Проректор ученной деятельности КФУ Проф. Минаарийов Р. г.

Программа дисциплины

<u>Аналитическая динамика и теория колебаний</u> Б1.Б.18

направление подготовки: <u>толостое ттрикладная моханика</u>
Профиль подготовки: Динамика, прочность машин, приборов и аппаратуры
Квалификация выпускника: <u>бакалавр</u>

Направление полготовки: 15.03.03 - Прикладная механика

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):<u>Якушев Р.С.</u> **Рецензент(ы):**Коноплев Ю.Г.

	плев Ю. Г.			
Протокол заседания кафедры No	от "		201г	
Учебно-методическая комиссия И	нститута ма	тематики и і	механики им.	Н.И. Лобачевского :
Протокол заседания УМК No	_ от "" _		_ 201г	

Регистрационный No 817221915

Казань 2015

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Якушев Р.С. Кафедра теоретической механики отделение механики , Rinat.Yaqushef@kpfu.ru

1. Цели освоения дисциплины

Изучить основные понятия и концепции аналитической динамики и теории колебаний, формулировку математических моделей динамических процессов, методы решения задач.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел "Б1.Б.18 Дисциплины (модули)" основной образовательной программы 15.03.03 Прикладная механика и относится к базовой (общепрофессиональной) части. Осваивается на 2, 3 курсах, 4, 5 семестры.

Данная учебная дисциплина входит в раздел Б 3. Профессиональный цикл. Базовая часть. Для изучения дисциплины необходимы знания, умения и компетенции, полученные обучающимися на базе естественнонаучного цикла дисциплин и в процессе введения на направление подготовки "Прикладная механика".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК 1 (общекультурные компетенции)	владеть культурой мышления, иметь способности к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения
ОК 10 (общекультурные компетенции)	использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического и компьютерного моделирования в теоретических и расчетно-экспериментальных исследованиях
ОК 11 (общекультурные компетенции)	способность понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том числе защиты государственной тайны
ОК 12 (общекультурные компетенции)	владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией
ОК 13 (общекультурные компетенции)	владеть одним из иностранных языков на уровне чтения и понимания научно-технической литературы, быть способным общаться в устной и письменной формах на иностранном языке
ОК 14 (общекультурные компетенции)	владеть основными знаниями и методами защиты производственного персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий
ОК 16 (общекультурные компетенции)	быть готовым к профессиональному росту, самостоятельно пополнять свои знания, совершенствовать умения и навыки, самостоятельно приобретать и применять новые знания, развивать компетенции

Шифр компетенции	Расшифровка приобретаемой компетенции						
ОК 18 (общекультурные компетенции)	использовать в личной жизни и профессиональной деятельности этические и правовые нормы, регулирующие межличностные отношения и отношение к обществу, окружающей среде, основные закономерности и нормы социального поведения, права и свободы человека и гражданина						
ОК 2 (общекультурные компетенции)	уметь логически верно, аргументированно и ясно строить устную и письменную речь						
ОК 21 (общекультурные компетенции)	владеть культурой безопасности, экологическим сознанием и риск-ориентированным мышлением, при котором вопросы безопасности и сохранения окружающей среды рассматриваются в качестве важнейших приоритетов жизнедеятельности						
ОК 3 (общекультурные компетенции)	быть готовым к сотрудничеству с коллегами и к работе в коллективе						
ОК 4 (общекультурные компетенции)	находить организационно-управленческие решения в нестандартных ситуациях и быть готовым нести за них ответственность						
ОК 6 (общекультурные компетенции)	стремиться к саморазвитию, повышению своей квалификации и мастерства						
ОК 7 (общекультурные компетенции)	уметь критически оценивать свои достоинства и недостатки, намечать пути и средства развития достоинств и устранения недостатков						
ОК 8 (общекультурные компетенции)	осознавать социальную значимость своей будущей профессии, обладать высокой мотивацией к выполнению профессиональной деятельности						
ОК15 (общекультурные компетенции)	уметь использовать фундаментальные законы природы, законы естественнонаучных дисциплин и механики в процессе профессиональной деятельности						
ПК 1 (профессиональные компетенции)	быть способным выявлять сущность научно-технических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их решения соответствующий физико-математический аппарат						
ПК 10 (профессиональные компетенции)	выполнять расчетно-экспериментальные работы по многовариантному анализу характеристик конкретных механических объектов с целью оптимизации технологических процессов						
ПК 11 (профессиональные компетенции)	участвовать во внедрении технологических процессов наукоемкого производства, контроля качества материалов, процессов повышения надежности и износостойкости элементов и узлов машин и установок, механических систем различного назначения						
ПК 7 (профессиональные компетенции)	проектировать детали и узлы с использованием программных систем компьютерного проектирования на основе эффективного сочетания передовых технологий и выполнения многовариантных расчетов						
ПК 8 (профессиональные компетенции)	участвовать в проектировании машин и конструкций с целью обеспечения их прочности, устойчивости, долговечности и безопасности, обеспечения надежности и износостойкости узлов и деталей машин						

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК 9 (профессиональные компетенции)	участвовать в работах по технико-экономическим обоснованиям проектируемых машин и конструкций, по составлению отдельных видов технической документации на проекты, их элементы и сборочные единицы
ПК 12 (профессиональные компетенции)	участвовать во внедрении и сопровождении результатов научно-технических и проектно-конструкторских разработок в реальный сектор экономики
ПК 13 (профессиональные компетенции)	участвовать в организации работы, направленной на формирование творческого характера деятельности небольших коллективов, работающих в области прикладной механики
ПК 15 (профессиональные компетенции)	разрабатывать планы на отдельные виды работ и контролировать их выполнение
ПК 2 (профессиональные компетенции)	применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности
ПК 3 (профессиональные компетенции)	быть готовым выполнять расчетно-экспериментальные работы и решать научно-технические задачи в области прикладной механики на основе достижений техники и технологий, классических и технических теорий и методов, физико-механических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и конструкциям
ПК 4 (профессиональные компетенции)	быть готовым выполнять расчетно-экспериментальные работы в области прикладной механики с использованием современных вычислительных методов, высокопроизводительных вычислительных систем и наукоемких компьютерных технологий, широко распространенных в промышленности систем мирового уровня, и экспериментального оборудования для проведения механических испытаний
ПК 5 (профессиональные компетенции)	составлять описания выполненных расчетно-экспериментальных работ и разрабатываемых проектов, обрабатывать и анализировать полученные результаты, готовить данные для составления отчетов и презентаций, написания докладов, статей и другой научно-технической документации

В результате освоения дисциплины студент:

1. должен знать:

основные положения наук естественного и гуманитарного цикла, современной механики, теории электричества и магнетизма, термодинамики, квантовой механики и специальной теории относительности, химии и биологии, мышления и компьютерных технологий, развития человека и цивилизаций.

3. должен владеть:

теоретическими знаниями об истории развития представлений основных естественнонаучных и гуманитарных теорий, об истолковании соответствующих основных понятий и законов.

При изучении этой дисциплины студенты получают возможность:

- понимать основные положения наук естественного и гуманитарного цикла, современной механики, теории электричества и магнетизма, термодинамики, квантовой механики и специальной теории относительности, химии и биологии, мышления и компьютерных технологий, развития человека и цивилизаций.
- обладать теоретическими знаниями об истории развития представлений основных естественнонаучных и гуманитарных теорий, об истолковании соответствующих основных понятий и законов.
- ориентироваться в хронологических изменениях способов истолкования природных процессов научным сообществом соответствующих исторических эпох;
- приобрести навыки работы с соответствующей научной и технической литературой.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 7 зачетных(ые) единиц(ы) 252 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 4 семестре; экзамен в 5 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

	N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоеми (в часах	аботы, сость)	Текущие формы контроля	
l					Лекции	практические занятия	лабораторные работы		
	1.	Тема 1. Введение в аналитическую динамику. Основные понятия принципы построения аналитической динамики. История развития аналитической механики. Понятие материальной точки и механической системы. Возможные и виртуальные перемещения. Принцип Даламбера. Работа на возможных							
L			J					A DARKTROH	,

перемещениях.

4 1-2 4 4 0 устный опре

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекшии	Виды и ча аудиторной р их трудоемк (в часах Практические	аботы, сость) Лабораторные	Текущие формы контроля
2.	Тема 2. Связи и их классификация. Степень свободы механической системы. Дифференциальные интегрируемые связи. Классификация механических систем. Общие уравнения динамики. Вариационные принципы. Принцип Гаусса. Принцип Герца.	4	3-4	4	занятия 6	расоты	домашнее задание
3.	Тема 3. Понятие обобщенной силы. Вычисление кинетической энергии через обобщенные координаты. Полная энергия системы. Уравнения Лагранжа II рода (однородные и неоднородные) и их применение к решению прикладных задач.	4	5-6	4	6	0	научный доклад
4.	Тема 4. Потенциальные силы. Уравнения Аппеля. Преобразования Лежандра. Гироскопические и диссипативные силы. Диссипативная функция Рэлея. Канонические переменные и канонические уравнения. Принцип Гамильтона. Интегральные инварианты.	4	7-8	4	6	0	домашнее задание

ı	N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной р их трудоемк (в часах Практические	аботы, сость) Лабораторные	Текущие формы контроля
	ō.	Тема 5. Вред и польза от колебаний и волн. Классификация колебательных процессов. Понятия колебания и волны. Свободные колебания точки с одной степенью свободы. Колебания математического маятника. Нелинейный осцилятор. Колебание массы на упругой подвеске. Фаза, частота, амплитуда колебаний. Силы, вызывающие колебания. Перемещения, скорость и ускорение при колебательном движении, определение кинетической энергии. Вынужденные колебания и резонанс. Учет сил трения. Затухающие колебания, логарифмический декремент затухания.	4	9-10	4	Занятия 6	О	устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной ра их трудоемк (в часах)	аботы, ость)	Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	
6.	Тема 6. Случайные колебания. Зависимость от случайных начальных условий и параметров случайного характера для колебаний стержня. Параметрические колебания. Периодическое изменение массы, упругости и параметричекой нагрузки. Уравнения Матье и Хилла. Параметрический резонанс. Диаграмма Айнса-Стрэтта. Теорема Флоке. Маятник Капицы.	4	11-12	4	6		контрольная работа
7.	Тема 7. Автоколебания. Метод фазовых поверхностей. Качественное исследование явлений шимми и флаттера. Устойчивость и неустойчивость колебаний.	4	13-14	4	6	0	научный доклад
8.	Тема 8. Колебание системы невзаимодействующих осциляторов. Теория дисперсии.	4	15-16	4	6	0	устный опрос
9.	Тема 9. Колебания системы связанных осциляторов. Переход к сплошной среде. Дисперсионные характеристики сред. Волны в периодических структурах.	4	17-18	2	4	_	контрольная точка
10.	Тема 10. Колебание упругой струны. Волновое уравнение. Стоячие и бегущие волны.	5	1	1	2	0	устный опрос

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Лекции	Виды и ча аудиторной ра их трудоемк (в часах Практические	аботы, ость) Лабораторные	Текущие формы контроля
11.	Тема 11. Основные понятия и исторические корни исследования нелинейных волновых процессов. вклад Мандельшама и Андронова в теорию нелинейных колебаний.	5	2	1	занятия 2	раооты	научный доклад
12.	Тема 12. Уравнения Кортевега де Фриза, солитоны. Бегущие волны в нелинейной среде без дисперсии.	5	3	1	2	0	дискуссия
13.	Тема 13. Простые волны и образование разрыва. Структура разрыва. Уединенные волны. Слабые ударные волны.	5	4	1	2	0	научный доклад
	Тема 14. Волны малой амплитуды в сплошных средах. Уравнения гидродинамики. Электромагнитные волны.	5	5	1	2	0	устный опрос
	Тема 15. Дисперсионные уравнения для звуковых волн. Стратифицированная жидкость. Звуковые волны в океане.	5	6	1	2	0	научный доклад
16.	Тема 16. Гравитационные волны в несжимаемой жидкости. Внутренние волны. Волны Россби. Волны в сверхтекучей жидкости и плазме.	5	7	1	2	0	устный опрос
17.	Тема 17. Скорость распространения волн. Различные способы определенияч фазовой и групповой скоростей.	5	8	1	2	0	научный доклад

N	Раздел Дисциплины/ Модуля	Семестр	Семестр Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	шодуля			Лекции	Практические занятия	лабораторные работы	
18.	Тема 18. Энергия и импульс волн. Волновой пакет в диспергирующей среде. Импульс волнового пакета.	5	9	1	2	0	устный опрос
19.	Тема 19. Фурье-анализ импульса. Фурье-анализ бегущих волновых пакетов. Связанные волны. Нормальный и аномальный эффект Доплера.	5	10	1	2	0	устный опрос
20.	Тема 20. Динамические системы, описываемые конечной системой дифференциальных уравнений. Консервативные и диссипативные системы.	5	11	1	2	0	тестирование
21.	Тема 21. Приближенные методы исследования нелинейных систем. Метод усреднения. Асимптотические методы малого параметра.	5	12	1	2	0	домашнее задание
22.	Тема 22. Гамильтоновы системы. Уравнение Эйлера-Лагранжа. Движение в центральном поле. Фазовый портрет гамильтоновых систем.	5	13	1	2	0	устный опрос
23.	Тема 23. Хаос. Хаотические колебания. Аттрактор Лоренца. Реакция Белоусова-Жаботинско Сечение Пуанкаре. Характерные признаки хаоса.		14	1	2	0	контрольная работа

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	аботы, сость)	Текущие формы контроля
	-			Лекции	практические занятия	лабораторные работы	
24.	Тема 24. Динамические системы с непрерывным и дискретным временем. Дискретные эволюционные модели. Отображение Пуанкаре. Треугольное отображение. Математические характеристики хаоса.	5	15	1	2	0	домашнее задание
25.	Тема 25. Сценарии перехода к хаосу: через удвоение периода, через перемежаемость, по сценарию Рюэля-Такенса.	5	16	1	2	0	домашнее задание
26.	Тема 26. Примеры и определение фрактала. Фрактальность пространственных форм. Размерность Хаусдорфа-Безиковича Самоподобие как фундаментальное свойство природы.	5	17	1	2	0	дискуссия
27.	Тема 27. Самоорганизация в нелинейных системах. Две тенденции динамики ? от беспорядка к порядку и обратно.	5	18	1	2	0	устный опрос
	Тема . Итоговая форма контроля	4		0	0	0	экзамен
<u>.</u>	Тема . Итоговая форма контроля	5		0	0	0	экзамен
	Итого			52	86	0	

4.2 Содержание дисциплины

Тема 1. Введение в аналитическую динамику. Основные понятия принципы построения аналитической динамики. История развития аналитической механики. Понятие материальной точки и механической системы. Возможные и виртуальные перемещения. Принцип Даламбера. Работа на возможных перемещениях. лекционное занятие (4 часа(ов)):

Введение в аналитическую динамику. История развития аналитической механики. Понятие материальной точки и механической системы. Возможные и виртуальные перемещения. Принцип Даламбера.

практическое занятие (4 часа(ов)):

Возможные и виртуальные перемещения. Принцип Даламбера. Работа на возможных перемещениях. .

Тема 2. Связи и их классификация. Степень свободы механической системы. Дифференциальные интегрируемые связи. Классификация механических систем. Общие уравнения динамики. Вариационные принципы. Принцип Гаусса. Принцип Герца.

лекционное занятие (4 часа(ов)):

Связи и их классификация. Степень свободы механической системы. Дифференциальные интегрируемые связи. Классификация механических систем. Общие уравнения динамики. Вариационные принципы.

практическое занятие (6 часа(ов)):

Примеры связей и их классификация. Определение степени свободы механической системы. Классификация механических систем.

Тема 3. Понятие обобщенной силы. Вычисление кинетической энергии через обобщенные координаты. Полная энергия системы. Уравнения Лагранжа II рода (однородные и неоднородные) и их применение к решению прикладных задач.

лекционное занятие (4 часа(ов)):

Обобщенная сила. Выражние кинетической энергии через обобщенные координаты. Полная энергия системы. Уравнения Лагранжа II рода (однородные и неоднородные) и их применение к решению прикладных задач

практическое занятие (6 часа(ов)):

Уравнения Лагранжа II рода (однородные и неоднородные) и решение прикладных задач

Тема 4. Потенциальные силы. Уравнения Аппеля. Преобразования Лежандра. Гироскопические и диссипативные силы. Диссипативная функция Рэлея. Канонические переменные и канонические уравнения. Принцип Гамильтона. Интегральные инварианты.

лекционное занятие (4 часа(ов)):

Преобразования Лежандра. Гироскопические и диссипативные силы. Диссипативная функция Рэлея. Канонические переменные и канонические уравнения. Принцип Гамильтона.

практическое занятие (6 часа(ов)):

Примеры потенциальных сил. Примеры решения уравнения Аппеля. Гироскопические и диссипативные силы. Определение диссипативной функция Рэлея. Канонические переменные и канонические уравнения. Принцип Гамильтона. Вычисление интегральных инвариантов.

Тема 5. Вред и польза от колебаний и волн. Классификация колебательных процессов. Понятия колебания и волны. Свободные колебания точки с одной степенью свободы. Колебания математического маятника. Нелинейный осцилятор. Колебание массы на упругой подвеске. Фаза, частота, амплитуда колебаний. Силы, вызывающие колебания. Перемещения, скорость и ускорение при колебательном движении, определение кинетической энергии. Вынужденные колебания и резонанс. Учет сил трения. Затухающие колебания, логарифмический декремент затухания.

лекционное занятие (4 часа(ов)):

Колебания и волны и их роль в жизни людей. Свободные колебания точки с одной степенью свободы. Нелинейные осциляторы. Фаза, частота, амплитуда колебаний. Силы, вызывающие колебания. Перемещения, скорость и ускорение при колебательном движении, определение кинетической энергии. Вынужденные колебания и резонанс. Затухающие колебания, логарифмический декремент затухания

практическое занятие (6 часа(ов)):

Расчет характеристик колебания маятника. Примеры нелинейных колебаний. Вычисление частот, амплитуд колебаний. Определение скорости и ускорения при колебательном движении, вычисление кинетической энергии. Определение частот резонанса при вынужденных колебаниях. Определение логарифмического декремента затухания

Тема 6. Случайные колебания. Зависимость от случайных начальных условий и параметров случайного характера для колебаний стержня. Параметрические колебания. Периодическое изменение массы, упругости и параметричекой нагрузки. Уравнения Матье и Хилла. Параметрический резонанс. Диаграмма Айнса-Стрэтта. Теорема Флоке. Маятник Капицы.

лекционное занятие (4 часа(ов)):

Случайные колебания. Параметрические колебания. Параметрический резонанс.

практическое занятие (6 часа(ов)):

Установление зависимости характеристик колебаний от случайных начальных условий для колебаний стержня. Параметрические колебания. Примеры изменения массы, упругости и параметричекой нагрузки. Решения уравнений Матье и Хилла. Маятник Капицы.

Тема 7. Автоколебания. Метод фазовых поверхностей. Качественное исследование явлений шимми и флаттера. Устойчивость и неустойчивость колебаний.

лекционное занятие (4 часа(ов)):

Автоколебания.

практическое занятие (6 часа(ов)):

Метод фазовых поверхностей. Качественное исследование явлений шимми и флаттера. Устойчивость и неустойчивость колебаний.

Тема 8. Колебание системы невзаимодействующих осциляторов. Теория дисперсии.

лекционное занятие (4 часа(ов)):

Колебание системы невзаимодействующих осциляторов. Теория дисперсии.

практическое занятие (6 часа(ов)):

Вычисление характеристик колебаний для системы невзаимодействующих осциляторов. Учет дисперсии.

Тема 9. Колебания системы связанных осциляторов. Переход к сплошной среде. Дисперсионные характеристики сред. Волны в периодических структурах.

лекционное занятие (2 часа(ов)):

Колебания системы связанных осциляторов. Переход к сплошной среде

практическое занятие (4 часа(ов)):

Дисперсионные характеристики сред. Волны в периодических структурах

Тема 10. Колебание упругой струны. Волновое уравнение. Стоячие и бегущие волны.

лекционное занятие (1 часа(ов)):

Колебание упругой струны. Волновое уравнение

практическое занятие (2 часа(ов)):

Определение характеристик стоячих и бегущих волн

Тема 11. Основные понятия и исторические корни исследования нелинейных волновых процессов. вклад Мандельшама и Андронова в теорию нелинейных колебаний.

лекционное занятие (1 часа(ов)):

Основные понятия и исторические корни исследования нелинейных волновых процессов. Вклад Мандельшама и Андронова в теорию нелинейных колебаний

практическое занятие (2 часа(ов)):

Исследования Мандельшама и Андронова в теории нелинейных колебаний

Тема 12. Уравнения Кортевега де Фриза, солитоны. Бегущие волны в нелинейной среде без дисперсии.

лекционное занятие (1 часа(ов)):

Уравнения Кортевега де Фриза, солитоны

практическое занятие (2 часа(ов)):

Бегущие волны в нелинейной среде без дисперсии

Тема 13. Простые волны и образование разрыва. Структура разрыва. Уединенные волны. Слабые ударные волны.

лекционное занятие (1 часа(ов)):

Простые волны и образование разрыва. Структура разрыва. Уединенные волны.

практическое занятие (2 часа(ов)):

Слабые ударные волны.

Тема 14. Волны малой амплитуды в сплошных средах. Уравнения гидродинамики. Электромагнитные волны.

лекционное занятие (1 часа(ов)):

Волны малой амплитуды в сплошных средах. Уравнения гидродинамики

практическое занятие (2 часа(ов)):

Электромагнитные волны

Тема 15. Дисперсионные уравнения для звуковых волн. Стратифицированная жидкость. Звуковые волны в океане.

лекционное занятие (1 часа(ов)):

Дисперсионные уравнения для звуковых волн. Стратифицированная жидкость

практическое занятие (2 часа(ов)):

Звуковые волны в океане

Тема 16. Гравитационные волны в несжимаемой жидкости. Внутренние волны. Волны Россби. Волны в сверхтекучей жидкости и плазме.

лекционное занятие (1 часа(ов)):

Гравитационные волны в несжимаемой жидкости. Внутренние волны. Волны Россби.

практическое занятие (2 часа(ов)):

Волны в сверхтекучей жидкости и плазме.

Тема 17. Скорость распространения волн. Различные способы определенияч фазовой и групповой скоростей.

лекционное занятие (1 часа(ов)):

Скорость распространения волн. Различные способы определения фазовой и групповой скоростей

практическое занятие (2 часа(ов)):

Определение фазовой и групповой скоростей

Тема 18. Энергия и импульс волн. Волновой пакет в диспергирующей среде. Импульс волнового пакета.

лекционное занятие (1 часа(ов)):

Энергия и импульс волн. Волновой пакет в диспергирующей среде.

практическое занятие (2 часа(ов)):

Импульс волнового пакета

Тема 19. Фурье-анализ импульса. Фурье-анализ бегущих волновых пакетов. Связанные волны. Нормальный и аномальный эффект Доплера.

лекционное занятие (1 часа(ов)):

Фурье-анализ импульса. Фурье-анализ бегущих волновых пакетов. Связанные волны.

практическое занятие (2 часа(ов)):

Нормальный и аномальный эффект Доплера.

Тема 20. Динамические системы, описываемые конечной системой дифференциальных уравнений. Консервативные и диссипативные системы.

лекционное занятие (1 часа(ов)):

Динамические системы, описываемые конечной системой дифференциальных уравнений

практическое занятие (2 часа(ов)):

Консервативные и диссипативные системы.

Тема 21. Приближенные методы исследования нелинейных систем. Метод усреднения. Асимптотические методы малого параметра.

лекционное занятие (1 часа(ов)):

Приближенные методы исследования нелинейных систем. Метод усреднения.

практическое занятие (2 часа(ов)):

Асимптотические методы малого параметра

Тема 22. Гамильтоновы системы. Уравнение Эйлера-Лагранжа. Движение в центральном поле. Фазовый портрет гамильтоновых систем.

лекционное занятие (1 часа(ов)):

Гамильтоновы системы. Уравнение Эйлера-Лагранжа. Движение в центральном поле. Фазовый портрет гамильтоновых систем

практическое занятие (2 часа(ов)):

Построение фазового портрета гамильтоновых систем

Тема 23. Хаос. Хаотические колебания. Аттрактор Лоренца. Реакция Белоусова-Жаботинского. Сечение Пуанкаре. Характерные признаки хаоса.

лекционное занятие (1 часа(ов)):

Хаос. Хаотические колебания. Аттрактор Лоренца. Реакция Белоусова-Жаботинского. Сечение Пуанкаре.

практическое занятие (2 часа(ов)):

Характерные признаки хаоса.

Тема 24. Динамические системы с непрерывным и дискретным временем. Дискретные эволюционные модели. Отображение Пуанкаре. Треугольное отображение. Математические характеристики хаоса.

лекционное занятие (1 часа(ов)):

Динамические системы с непрерывным и дискретным временем. Дискретные эволюционные модели. Отображение Пуанкаре. Треугольное отображение.

практическое занятие (2 часа(ов)):

Математические характеристики хаоса

Тема 25. Сценарии перехода к хаосу: через удвоение периода, через перемежаемость, по сценарию Рюэля-Такенса.

лекционное занятие (1 часа(ов)):

Сценарии перехода к хаосу: через удвоение периода, через перемежаемость, по сценарию Рюэля-Такенса.

практическое занятие (2 часа(ов)):

Переходы к хаосу: через удвоение периода, через перемежаемость

Тема 26. Примеры и определение фрактала. Фрактальность пространственных форм. Размерность Хаусдорфа-Безиковича. Самоподобие как фундаментальное свойство природы.

лекционное занятие (1 часа(ов)):

Примеры и определение фрактала. Фрактальность пространственных форм. Размерность Хаусдорфа-Безиковича. Самоподобие как фундаментальное свойство природы

практическое занятие (2 часа(ов)):

Примеры фракталов. Размерность Хаусдорфа-Безиковича.

Тема 27. Самоорганизация в нелинейных системах. Две тенденции динамики ? от беспорядка к порядку и обратно.

лекционное занятие (1 часа(ов)):

Самоорганизация в нелинейных системах. Две тенденции динамики - от беспорядка к порядку и обратно

практическое занятие (2 часа(ов)):

Примеры перехода от беспорядка к порядку и обратно

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Введение в аналитическую динамику. Основные понятия принципы построения аналитической динамики. История развития аналитической механики. Понятие материальной точки и механической системы. Возможные и виртуальные перемещения. Принцип Даламбера. Работа на возможных перемещениях.	4	1-2	подготовка к устному опросу	5	устный опрос
	Тема 2. Связи и их классификация. Степень свободы механической системы. Дифференциальные интегрируемые связи. Классификация	4	3-4	подготовка домашнего задания	2	домашнее задание
L .	механических систем. Общие уравнения динамики. Вариационные принципы. Принцип Гаусса. Принцип Герца.	7	0 4	подготовка к научному докладу	2	научный доклад
3.	Тема 3. Понятие обобщенной силы. Вычисление кинетической энергии через обобщенные координаты. Полная энергия системы. Уравнения Лагранжа II рода (однородные и неоднородные) и их применение к решению прикладных задач.	4	5-6	подготовка к научному докладу	5	научный доклад

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
4.	Тема 4. Потенциальные силы. Уравнения Аппеля. Преобразования Лежандра. Гироскопические и диссипативные силы. Диссипативная функция Рэлея.	4	7-8	подготовка домашнего задания	2	домашнее задание
	Канонические переменные и канонические уравнения. Принцип Гамильтона. Интегральные инварианты.			подготовка к устному опросу	2	устный опрос
5.	Тема 5. Вред и польза от колебаний и волн. Классификация колебательных процессов. Понятия колебания и волны. Свободные колебания точки с одной степенью свободы. Колебания математического маятника. Нелинейный осцилятор. Колебание массы на упругой подвеске. Фаза, частота, амплитуда колебаний. Силы, вызывающие колебания.	4		подготовка к контрольной работе	3	контрольная работа
	Перемещения, скорость и ускорение при колебательном движении, определение кинетической энергии. Вынужденные колебания и резонанс. Учет сил трения. Затухающие колебания, логарифмический декремент затухания.			подготовка к устному опросу	2	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
6.	Тема 6. Случайные колебания. Зависимость от случайных начальных условий и параметров случайного характера для колебаний стержня. Параметрические колебания. Периодическое изменение массы,	4		подготовка к контрольной работе	2	контрольная работа
	упругости и параметричекой нагрузки. Уравнения Матье и Хилла. Параметрический резонанс. Диаграмма Айнса-Стрэтта. Теорема Флоке. Маятник Капицы.			подготовка к устному опросу	2	устный опрос
7.	Тема 7. Автоколебания. Метод фазовых поверхностей. Качественное исследование явлений шимми и флаттера. Устойчивость и неустойчивость колебаний.	4		подготовка к научному докладу	5	научный доклад
8.	Тема 8. Колебание системы невзаимодействующих осциляторов. Теория	4		подготовка к научному докладу подготовка к	4	научный доклад
	дисперсии.			устному опросу	1	устный опрос
9.	Тема 9. Колебания системы связанных осциляторов. Переход к сплошной среде. Дисперсионные характеристики сред.	4		подготовка к контрольной точке	4	контрольная точка
	Волны в периодических структурах.			подготовка к устному опросу	1	устный опрос
10.	Тема 10. Колебание упругой струны. Волновое уравнение. Стоячие и бегущие волны.	5		подготовка к устному опросу	1	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
11.	Тема 11. Основные понятия и исторические корни исследования нелинейных волновых процессов. вклад Мандельшама и Андронова в теорию нелинейных колебаний.	5	_	подготовка к научному докладу	1	научный доклад
12.	Тема 12. Уравнения Кортевега де Фриза, солитоны. Бегущие	5	3	подготовка к дискуссии	0,5	дискуссия
	волны в нелинейной среде без дисперсии.			подготовка к устному опросу	0,5	устный опрос
13.	Тема 13. Простые волны и образование разрыва. Структура разрыва. Уединенные волны. Слабые ударные волны.	5		подготовка к научному докладу	1	научный доклад
14.	Тема 14. Волны малой амплитуды в сплошных средах. Уравнения гидродинамики. Электромагнитные волны.	5	ו	подготовка к устному опросу	1	устный опрос
	Тема 15. Дисперсионные уравнения для звуковых волн. Стратифицированная жидкость. Звуковые волны в океане.	5		подготовка к научному докладу	1	научный доклад
16.	Тема 16. Гравитационные волны в несжимаемой жидкости. Внутренние волны. Волны Россби. Волны в сверхтекучей жидкости и плазме.	5	/	подготовка к устному опросу	1	устный опрос
17.	Тема 17. Скорость распространения волн. Различные способы определенияч фазовой и групповой скоростей.	5		подготовка к научному докладу	1	научный доклад

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
18.	Тема 18. Энергия и импульс волн. Волновой пакет в диспергирующей среде. Импульс волнового пакета.	5	9	подготовка к устному опросу	1	устный опрос
19.	Тема 19. Фурье-анализ импульса. Фурье-анализ бегущих волновых пакетов. Связанные волны. Нормальный и аномальный эффект Доплера.	5	10	подготовка к устному опросу	1	устный опрос
20.	Тема 20. Динамические системы, описываемые конечной системой дифференциальных	5	11	подготовка к тестированию	0,5	тестирование
	уравнений. Консервативные и диссипативные системы.			подготовка к эссе	0,5	эссе
21.	Тема 21. Приближенные методы исследования нелинейных систем. Метод усреднения. Асимптотические методы малого параметра.	5	12	подготовка домашнего задания	1	домашнее задание
22.	Тема 22. Гамильтоновы системы. Уравнение Эйлера-Лагранжа. Движение в центральном поле. Фазовый портрет гамильтоновых систем.	5	1.5	подготовка к устному опросу	1	устный опрос
23.	Тема 23. Хаос. Хаотические колебания. Аттрактор Лоренца. Реакция Белоусова-Жаботинско Сечение Пуанкаре. Характерные признаки хаоса.	5		подготовка к контрольной работе	0,5	контрольная работа
				подготовка к эссе	0,5	эссе

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
24.	Тема 24. Динамические системы с непрерывным и дискретным временем. Дискретные эволюционные модели. Отображение Пуанкаре. Треугольное отображение. Математические характеристики хаоса.		15	подготовка домашнего задания	1	домашнее задание
25.	Тема 25. Сценарии перехода к хаосу: через удвоение периода, через перемежаемость, по сценарию Рюэля-Такенса.	5	16	подготовка домашнего задания	1	домашнее задание
26.	Тема 26. Примеры и определение фрактала. Фрактальность пространственных форм. Размерность Хаусдорфа-Безиковича Самоподобие как фундаментальное свойство природы.	5	17	подготовка к дискуссии	1	дискуссия
27.	Тема 27. Самоорганизация в нелинейных системах. Две тенденции динамики ? от беспорядку и обратно.	5	18	подготовка к устному опросу	1	устный опрос
	Итого				63	

5. Образовательные технологии, включая интерактивные формы обучения

При проведении занятий рекомендуется использование активных и интерактивных форм занятий (ролевых игр, проектных методик, подготовка докладов, презентаций, иных форм) в сочетании с внеаудиторной (самостоятельной) работой.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение в аналитическую динамику. Основные понятия принципы построения аналитической динамики. История развития аналитической механики. Понятие материальной точки и механической системы. Возможные и виртуальные перемещения. Принцип Даламбера. Работа на возможных перемещениях.

устный опрос, примерные вопросы:

Возможные и виртуальные перемещения. Принцип Даламбера. Работа на возможных перемещениях

Тема 2. Связи и их классификация. Степень свободы механической системы. Дифференциальные интегрируемые связи. Классификация механических систем. Общие уравнения динамики. Вариационные принципы. Принцип Гаусса. Принцип Герца.

домашнее задание, примерные вопросы:

Принцип Гаусса. Принцип Герца.

научный доклад, примерные вопросы:

Дифференциальные интегрируемые связи. Классификация механических систем. Вариационные принципы.

Тема 3. Понятие обобщенной силы. Вычисление кинетической энергии через обобщенные координаты. Полная энергия системы. Уравнения Лагранжа II рода (однородные и неоднородные) и их применение к решению прикладных задач.

научный доклад, примерные вопросы:

Полная энергия системы. Уравнения Лагранжа II рода (однородные и неоднородные) и их применение к решению прикладных задач.

Тема 4. Потенциальные силы. Уравнения Аппеля. Преобразования Лежандра. Гироскопические и диссипативные силы. Диссипативная функция Рэлея. Канонические переменные и канонические уравнения. Принцип Гамильтона. Интегральные инварианты.

домашнее задание, примерные вопросы:

Гироскопические и диссипативные силы. Диссипативная функция Рэлея.

устный опрос, примерные вопросы:

Канонические переменные и канонические уравнения. Принцип Гамильтона

Тема 5. Вред и польза от колебаний и волн. Классификация колебательных процессов. Понятия колебания и волны. Свободные колебания точки с одной степенью свободы. Колебания математического маятника. Нелинейный осцилятор. Колебание массы на упругой подвеске. Фаза, частота, амплитуда колебаний. Силы, вызывающие колебания. Перемещения, скорость и ускорение при колебательном движении, определение кинетической энергии. Вынужденные колебания и резонанс. Учет сил трения. Затухающие колебания, логарифмический декремент затухания.

контрольная работа, примерные вопросы:

Перемещения, скорость и ускорение при колебательном движении, определение кинетической энергии.

устный опрос, примерные вопросы:

Фаза, частота, амплитуда колебаний. Силы, вызывающие колебания.

Тема 6. Случайные колебания. Зависимость от случайных начальных условий и параметров случайного характера для колебаний стержня. Параметрические колебания. Периодическое изменение массы, упругости и параметричекой нагрузки. Уравнения Матье и Хилла. Параметрический резонанс. Диаграмма Айнса-Стрэтта. Теорема Флоке. Маятник Капицы.

контрольная работа, примерные вопросы:

Случайные колебания. Зависимость от случайных начальных условий и параметров случайного характера для колебаний стержня.

устный опрос, примерные вопросы:

Параметрические колебания. Параметрический резонанс. Диаграмма Айнса-Стрэтта

Тема 7. Автоколебания. Метод фазовых поверхностей. Качественное исследование явлений шимми и флаттера. Устойчивость и неустойчивость колебаний.

научный доклад, примерные вопросы:

Метод фазовых поверхностей

Тема 8. Колебание системы невзаимодействующих осциляторов. Теория дисперсии.

научный доклад, примерные вопросы:

Теория дисперсии

устный опрос, примерные вопросы:

Характеристики дисперсии

Тема 9. Колебания системы связанных осциляторов. Переход к сплошной среде. Дисперсионные характеристики сред. Волны в периодических структурах.

контрольная точка, примерные вопросы:

Волны в периодических структурах

устный опрос, примерные вопросы:

Колебания системы связанных осциляторов. Переход к сплошной среде. Дисперсионные характеристики сред.

Тема 10. Колебание упругой струны. Волновое уравнение. Стоячие и бегущие волны.

устный опрос, примерные вопросы:

Стоячие и бегущие волны

Тема 11. Основные понятия и исторические корни исследования нелинейных волновых процессов. вклад Мандельшама и Андронова в теорию нелинейных колебаний.

научный доклад , примерные вопросы:

Вклад Мандельшама в теорию нелинейных колебаний/Вклад Андронова в теорию нелинейных колебаний

Тема 12. Уравнения Кортевега де Фриза, солитоны. Бегущие волны в нелинейной среде без дисперсии.

дискуссия, примерные вопросы:

Бегущие волны в нелинейной среде без дисперсии.

устный опрос, примерные вопросы:

Солитоны

Тема 13. Простые волны и образование разрыва. Структура разрыва. Уединенные волны. Слабые ударные волны.

научный доклад, примерные вопросы:

Уединенные волны

Тема 14. Волны малой амплитуды в сплошных средах. Уравнения гидродинамики. Электромагнитные волны.

устный опрос, примерные вопросы:

Уравнения гидродинамики

Тема 15. Дисперсионные уравнения для звуковых волн. Стратифицированная жидкость. Звуковые волны в океане.

научный доклад, примерные вопросы:

Звуковые волны в океане

Тема 16. Гравитационные волны в несжимаемой жидкости. Внутренние волны. Волны Россби. Волны в сверхтекучей жидкости и плазме.

устный опрос, примерные вопросы:

Волны Россби.

Тема 17. Скорость распространения волн. Различные способы определенияч фазовой и групповой скоростей.

научный доклад, примерные вопросы:

Различные способы определенияч фазовой и групповой скоростей

Тема 18. Энергия и импульс волн. Волновой пакет в диспергирующей среде. Импульс волнового пакета.

устный опрос, примерные вопросы:

Волновой пакет в диспергирующей среде

Тема 19. Фурье-анализ импульса. Фурье-анализ бегущих волновых пакетов. Связанные волны. Нормальный и аномальный эффект Доплера.

устный опрос, примерные вопросы:

Эффект Доплера

Тема 20. Динамические системы, описываемые конечной системой дифференциальных уравнений. Консервативные и диссипативные системы.

тестирование, примерные вопросы:

Консервативные и диссипативные системы.

эссе, примерные темы:

Динамические системы, описываемые конечной системой дифференциальных уравнений

Тема 21. Приближенные методы исследования нелинейных систем. Метод усреднения. Асимптотические методы малого параметра.

домашнее задание, примерные вопросы:

Метод усреднения

Тема 22. Гамильтоновы системы. Уравнение Эйлера-Лагранжа. Движение в центральном поле. Фазовый портрет гамильтоновых систем.

устный опрос, примерные вопросы:

Движение в центральном поле

Тема 23. Хаос. Хаотические колебания. Аттрактор Лоренца. Реакция Белоусова-Жаботинского. Сечение Пуанкаре. Характерные признаки хаоса.

контрольная работа, примерные вопросы:

Хаотические колебания. Характерные признаки хаоса.

эссе, примерные темы:

Аттрактор Лоренца. Реакция Белоусова-Жаботинского.

Тема 24. Динамические системы с непрерывным и дискретным временем. Дискретные эволюционные модели. Отображение Пуанкаре. Треугольное отображение. Математические характеристики хаоса.

домашнее задание, примерные вопросы:

Треугольное отображение.

Тема 25. Сценарии перехода к хаосу: через удвоение периода, через перемежаемость, по сценарию Рюэля-Такенса.

домашнее задание, примерные вопросы:

Сценарии перехода к хаосу.

Тема 26. Примеры и определение фрактала. Фрактальность пространственных форм. Размерность Хаусдорфа-Безиковича. Самоподобие как фундаментальное свойство природы.

дискуссия, примерные вопросы:

Самоподобие как фундаментальное свойство природы

Тема 27. Самоорганизация в нелинейных системах. Две тенденции динамики ? от беспорядка к порядку и обратно.

устный опрос, примерные вопросы:

Самоорганизация в нелинейных системах

Тема. Итоговая форма контроля

Тема . Итоговая форма контроля

Примерные вопросы к экзамену:

Вопросы к экзамену

- 1. Уравнения динамики.
- 2. Уравнения Лагранжа II рода.
- 3. Уравнения Гамильтона.
- 4. Канонические переменные.
- 5. Циклические координаты.
- 6. Вариационные принципы.
- 7. Диссипативные и гироскопические силы.
- 8. Обобщенные силы, перемещения и импульсы.
- 9. Основные уравнения динамики систем
- 10. Классификация связей механических систем.
- 11. Что такое колебание.
- 12. Виды колебаний.
- 13. Осцилляторы n-степенями свободы.
- 14. Содержание гипотетико-дедуктивного метода.
- 15. Понятие резонанса.
- 16. Что такое волна.
- 17. Мандельштам основоположник теории нелинейных колебаний.
- 18. Суть свободных колебаний.
- 19. Гармонические колебания.
- 20. Вынужденные колебания.
- 21. Влияние трения на колебания.
- 22. Фазовая плоскость.
- 23. Суть автоколебаний.
- 24. Параметрические колебания.
- 25. Понятие волновая функция.
- 26. Принцип суперпозиции волн.
- 27. Сложные динамические системы.
- 28. Уравнение эволюции системы.
- 29. Диссипативные структуры.
- 30. Особенности нелинейных волн.

7.1. Основная литература:

Ганиев, Ривнер Фазылович. Нелинейная волновая механика и технологии: волновые и колебательные явления в основе высоких технологий / Р. Ф. Ганиев, Л. Е. Украинский. - Изд. 2-е, доп.- Москва: Институт компьютерных исследований: [Регулярная и хаотическая динамика], 2011.-780 с.

Нигматулин, Роберт Искандерович. Механика сплошной среды, Кинематика. Динамика. Термодинамика. Статистическая динамика: учебник для студентов высших учебных заведений, обучающихся по специальности 010701 "Фундаментальная механика и механика" и направлению подготовки 010800 "Механика и математическое моделирование" / Р. И. Нигматулин.?Москва: ГЭОТАР-Медиа, 2014.?639 с.

Николаенко В.Л. Механика - М: Новое знание, 2011. - 636 с.,

http://e.lanbook.com/view/book/2911

Покровский В.В. Механика. Методы решения задач: учебное пособие. - М.: БИНОМ.

Лаборатория знаний, 2012. - 253 c. http://e.lanbook.com/view/book/8713/

Эрдеди, Алексей Алексеевич. Теоретическая механика: учебное пособие для студентов высших учебных заведений, обучающихся по немашиностроительным направлениям подготовки / А. А. Эрдеди, Н. А. Эрдеди. Издание 2-е, стереотипное. Москва: КНОРУС, 2012. 203 с.

7.2. Дополнительная литература:

Курс общей физики: Учебное пособие / К.Б. Канн. - М.: КУРС: НИЦ ИНФРА-М, 2014. - 360 с.: 60х90 1/16. (переплет) ISBN 978-5-905554-47-6, 700 экз.

http://www.znanium.com/bookread.php?book=443435

Физика: Механика. Механические колебания и волны. Молекулярная физика. Термодинамика: Учебное пособие / С.И. Кузнецов. - 4-е изд., испр. и доп. - М.: Вузовский учебник: НИЦ ИНФРА-М, 2014. - 248 с.: 60х90 1/16. (п) ISBN 978-5-9558-0317-3, 700 экз. http://znanium.com/bookread.php?book=412940

7.3. Интернет-ресурсы:

Алдошин Г. Т. Теория линейных и нелинейных колебаний - http://e.lanbook.com/view/book/4640/ Багдоев А.Г. Ерофеев В.И. Шекоян А.В. Линейные и нелинейные волны в диспергирующих сплошных средах - http://e.lanbook.com/view/book/2665/

Бармасов, А. В. Курс общей физики для природопользователей. Колебания и волны: учеб. пособие / А. В. Бармасов, В. Е. Холмогоров / Под ред. А. П. Бобровского. - http://znanium.com/bookread2.php?book=349952

Карлов Н.В., Кириченко Н.А. Колебания, волны, структуры - http://e.lanbook.com/view/book/2192/Покровский В.В. Механика. Методы решения задач: учебное пособие. - http://e.lanbook.com/view/book/8713/

Скубов Д.Ю. Основы теории нелинейных колебаний - http://e.lanbook.com/view/book/30203/ Тимофеев А.Б.,.. Механические колебания и резонансы в организме человека http://e.lanbook.com/view/book/2337/

Шинкин В.Н. Теоретическая механика. Динамика и аналитическая механика. Курс лекций - http://e.lanbook.com/view/book/47478/

Яковенко Г.Н. Краткий курс аналитической динамики - http://e.lanbook.com/view/book/8712/

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Аналитическая динамика и теория колебаний" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Компьютерный класс, оргтехника, кинозал, экспериментальные установки для проведения лабораторных занятий и самостоятельной работы; доступ к ресурсам сети Интернет (во время самостоятельной подготовки).

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 15.03.03 "Прикладная механика" и профилю подготовки Динамика, прочность машин, приборов и аппаратуры .

Программа дисциплины "Аналитическая динамика и теория колебаний"; 15.03.03 Прикладная механика; доцент, к.н. (доцент) Якушев Р.С.

Автор(ы): Якушев Р.С.	
""	_ 201 г.
Рецензент(ы): Коноплев Ю.Г.	
"_"	